Hendrik Jan Hoogeboom
Gheorghe Paun
Grzegorz Rozenberg
Arto Salomaa (Eds.)

Membrane
Computing

7th International Workshop, WMC 2006
Leiden, The Netherlands, July 2006
Revised, Selected, and Invited Papers

LNCS 4361

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4361

Hendrik Jan Hoogeboom Gheorghe Paun
Grzegorz Rozenberg Arto Salomaa (Eds.)

Membrane
Computing

‘7/th International Workshop, WMC 2006
Leiden, The Netherlands, July 17-21, 2006
Revised, Selected, and Invited Papers

@ Springer

Volume Editors

Hendrik Jan Hoogeboom

Leiden Center of Advanced Computer Science (LIACS)
Leiden University

Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
E-mail: hoogeboom@liacs.nl

Gheorghe Paun

Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucuresti, Romania, and
Research Group on Natural Computing
Department of Computer Science and Al

Seville University, 41012 Seville, Spain

E-mail: george.paun@imar.ro, gpaun@us.es

Grzegorz Rozenberg

Leiden Center of Advanced Computer Science (LIACS)
Leiden University

Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
E-mail: rozenberg @liacs.nl

Arto Salomaa

Turku Centre for Computer Science (TUCS)
Leminkéisenkatu 14, 20520 Turku, Finland
E-mail: asalomaa@cs.utu.fi

Library of Congress Control Number: 2006939014

CR Subject Classification (1998): F.1, F4,1.6,J.3
LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-69088-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-69088-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11963516 06/3142 543210

Preface

The present volume contains a selection of papers presented at the Seventh
Workshop on Membrane Computing, WMC7, which took place in Leiden, The
Netherlands, during July 17-21, 2006. The first three workshops on membrane
computing were organized in Curtea de Arges, Romania — they took place in
August 2000 (with the proceedings published in Lecture Notes in Computer
Science, volume 2235), in August 2001 (with a selection of papers published as a
special issue of Fundamenta Informaticae, volume 49, numbers 1-3, 2002), and
in August 2002 (with the proceedings published in Lecture Notes in Computer
Science, volume 2597). The next three workshops were organized in Tarragona,
Spain, in July 2003, in Milan, Italy, in June 2004, and in Vienna, Austria, in
July 2005, with the proceedings published as volumes 2933, 3365, and 3850,
respectively, of Lecture Notes in Computer Science.

The 2006 edition of WMC was organized (and supported) by Lorentz Center,
Leiden, under the auspices of the European Molecular Computing Consortium
(EMCC). Special attention was paid to the interaction of membrane computing
with biology, focusing both on the biological roots of membrane computing and
on applications of membrane computing in biology and medicine. Furthermore,
the meeting was planned also as an event promoting the interaction and coop-
eration between the participants (e.g., the workshop was one day longer than
usually, with afternoons devoted mainly to joint work).

The pre-proceedings of WMC7 were published by the Institute of Advanced
Computer Science (LIACS) of Leiden University, and they were available during
the workshop. Each paper was refereed by two members of the Program Commit-
tee. As an indication of the healthy state of this research area, it is worth noting
that both the number of submitted papers and the total number of contribut-
ing authors were bigger this year than last year, while the number, the variety,
and the intricacy of applications (mainly in biology and medicine) also increased
substantially. These observations are confirmed by the present volume. Most of
the included papers were significantly modified according to the discussions that
took place during the workshop.

The volume includes all the invited talks (seven this time) — more than for any
proceedings of previous editions of WMC; moreover, this time the invited talks
were chosen in such a way as to reflect the relationships of membrane computing
to biology and medicine. Consequently, this volume is a faithful illustration of
the current state of research in membrane computing (a comprehensive source
of information about this fast-emerging area of natural computing is the Web
page http://psystems.disco.unimib.it).

The Program Committee consisted of Matteo Cavaliere (Trento, Italy),
Erzsébeth Csuhaj-Varji (Budapest, Hungary), Marian Gheorghe (Sheffield, UK),
Hendrik Jan Hoogeboom (Leiden, Netherlands) — Co-chair, Oscar H. Ibarra

VI Preface

(Santa Barbara, USA), Natasha Jonoska (Tampa, Florida), Shanhara Narayanan
Krishna (Bombay, India), Gheorghe Paun (Bucharest, Romania, and Seville,
Spain) — Co-chair, Mario J. Pérez-Jiménez (Seville, Spain), and Claudio Zandron
(Milan, Italy).

The editors are indebted to the members of the Program Committee, to all
participants in WMC7, and in particular to the contributors to this volume.
Special thanks go to Lorentz Center, Leiden, for the perfect organization of the
workshop, and to Springer for the efficient cooperation in the timely production
of the present volume.

November 2006 Hendrik Jan Hoogeboom
Gheorghe Paun

Grzegorz Rozenberg

Arto Salomaa

Table of Contents

Invited Lectures

Biological Roots and Applications of P Systems: Further Suggestions . . .
Ioan I. Ardelean

Formalizing Spherical Membrane Structures and Membrane Proteins

Populations

Daniela Besozzi and Grzegorz Rozenberg

Quorum Sensing: A Cell-Cell Signalling Mechanism Used to Coordinate
Behavioral Changes in Bacterial Populations
Miguel Camara

A Modeling Approach Based on P Systems with Bounded

Parallelismo

Francesco Bernardini, Francisco J. Romero-Campero,
Marian Gheorghe, and Mario J. Pérez-Jiménez

Synchrony and Asynchrony in Membrane Systems.
Jetty Kleyn and Maciej Koutny

MP Systems Approaches to Biochemical Dynamics: Biological Rhythms

and Oscillations

Vincenzo Manca

Modeling Signal Transduction Using P Systems
Andrei Paun, Mario J. Pérez-Jiménez, and
Francisco J. Romero-Campero

Regular Papers

Extended Spiking Neural P Systems
Artiom Alhazov, Rudolf Freund, Marion Oswald, and
Marija Slavkovik

Towards a Characterization of P Systems with Minimal
Symport/Antiport and Two Membranes
Artiom Alhazov and Yurii Rogozhin

Expressing Control Mechanisms of Membranes by Rewriting
Strategies . ..o
Oana Andrei, Gabriel Ciobanu, and Dorel Lucanu

18

42

49

66

86

VIII Table of Contents

Tissue P Systems with Communication Modes 170
Francesco Bernardini and Rudolf Freund

Towards a Hybrid Metabolic Algorithm 183
Luca Bianco and Federico Fontana

Towards a P Systems Pseudomonas Quorum Sensing Model 197
Luca Bianco, Dario Pescini, Peter Siepmann, Natalio Krasnogor,
Francisco J. Romero-Campero, and Marian Gheorghe

Membrane Systems with External Control 215
Robert Brijder, Matteo Cavaliere, Agustin Riscos-Nunez,
Grzegorz Rozenberg, and Dragos Sburlan

A Case Study in (Mem)Brane Computation: Generating Squares
of Natural Numbers i 233
Nadia Busi and Miguel A. Gutiérrez-Naranjo

Computing with Genetic Gates, Proteins, and Membranes. 250
Nadia Busi and Claudio Zandron

Classifying States of a Finite Markov Chain with Membrane

COMPULING . o ottt e e 266
Mbdnica Cardona, M. Angels Colomer, Mario J. Pérez-Jiménez, and
Alba Zaragoza

Partial Knowledge in Membrane Systems: A Logical Approach......... 279
Matteo Cavaliere and Radu Mardare

Tau Leaping Stochastic Simulation Method in P Systems 298
Paolo Cazzaniga, Dario Pescini, Daniela Besozzi, and
Giancarlo Mauri

P Machines: An Automata Approach to Membrane Computing 314
Gabriel Ciobanu and Mihai Gontineac

Modeling Dynamical Parallelism in Bio-systems...................... 330
Erzsébet Csuhaj-Varji, Rudolf Freund, and Dragos Sburlan

P Colonies with a Bounded Number of Cells and Programs............ 352
Erzsébet Csuhaj-Varji, Maurice Margenstern, and Gyorgy Vaszil

P Finite Automata and Regular Languages over Countably Infinite
Alphabets.o 367
Jirgen Dassow and Gyorgy Vaszil

Mitotic Oscillators as MP Graphs 382
Giuditta Franco, Pietro Hiram Guzzi, Vincenzo Manca, and
Tommaso Mazza

Table of Contents

Infinite Hierarchies of Conformon-P Systems
Pierluigi Frisco

A Protein Substructure Based P System for Description and Analysis
of Cell Signalling Networks i
Thomas Hinze, Thorsten Lenser, and Peter Dittrich

Characterizations of Some Restricted Spiking Neural P Systems
Oscar H. Ibarra and Sara Woodworth

A Membrane Algorithm for the Min Storage Problem.................
Alberto Leporati and Dario Pagani

P Systems with Symport/Antiport and Time
Hitesh Nagda, Andrei Paun, and Alfonso Rodriguez-Paton

Towards Probabilistic Model Checking on P Systems Using PRISM
Francisco J. Romero-Campero, Marian Gheorghe, Luca Bianco,
Dario Pescini, Mario J. Pérez-Jiménez, and Rodica Ceterchi

Graphical Modeling of Higher Plants Using P Systems................
Alvaro Romero-Jiménez, Miguel A. Gutiérrez-Naranjo, and
Mario J. Pérez-Jiménez

Identifying P Rules from Membrane Structures with an Error-Correcting
Approach
José M. Sempere and Damidn Lopez

Computational Completeness of Tissue P Systems with Conditional

Uniport . . oo e
Sergey Verlan, Francesco Bernardini, Marian Gheorghe, and
Maurice Margenstern

Distributed Evolutionary Algorithms Inspired by Membranes in Solving
Continuous Optimization Problems..........
Daniela Zaharie and Gabriel Ciobanu

Author Index

Biological Roots and Applications of P Systems:
Further Suggestions

TIoan I. Ardelean

Institute of Biology, Romanian Academy
Centre of Microbiology, Splaiul Independentei 296
P.O. Box 56-53, Bucharest 060031, Romania
ioan.ardelean@ibiol.ro

Abstract. P systems offer the possibility to appropriately describe dis-
crete processes performed by: i) single objects: catalytic molecules (=
enzymes), supramolecular structures (MscL, porins, ionic channels etc.),
single cells, and ii) a small number of objects occurring in the sam-
ple, e.g., several mechanosensitive channels occurring within a membrane
patch. Thus P systems could offer the possibility to capture and model
the plethora of experimental data obtained in the emerging and rapidly
growing field of single cell or single molecule or atom studies.

Furthermore, it is suggested that in vitro implementation of P sys-
tems could be done by the use of artificial membranes, a step forward
computations with artificial membranes.

1 Introduction

In the framework of the dialog between P systems and (Micro)Biology the aim of
this paper is to add further arguments that i) biological roots of P systems are the
computations performed by living cells when they carry out chemical reactions
and physical processes, and ii) that discrete mathematics is very appropriate to
describe discontinuous biological processes.

Furthermore, I claim that P systems are very appropriate to model the func-
tion of single objects (cell, channel, enzyme, etc.) and suggest that in vitro im-
plementation of P systems could be done by the use of artificial membranes, and
this can be a step forward computations with artificial membranes.

2 Biological Roots

At the beginning of experimental research in biology the dominant opinion was
that inside living cells there is no chemical reaction or physical processes (Mayer,
1998). When the experimental biology significantly developed (in the first part
of XIXth century), it became evident for all scientists that chemistry and physics
can be used to study living organisms because: i) cells are composed of (different)
chemicals, and ii) within the cells the chemicals follow chemical reactions and
physical transformations which should obey the laws of chemistry and physics.

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 1-17, 2006.
© Springer-Verlag Berlin Heidelberg 2006

2 I.I. Ardelean

The use of Chemistry and Physics to study Biology was not an easy and
smooth approach; for example, a historical debate concerned the usefulness of
thermodynamics in the study of biology. Thermodynamics introduced, in the first
half of XIXth century, the key concept of energy, as the quantitative expression
of the capacity of any system for doing work and overcome resistance (for more
details see Ciures and Margineanu, 1970, Morowitz, 1972; Margineanu, 2001).

There were authoritative voices claiming that living matter does not obey the
second law of thermodynamics, whose usefulness for biology was under question
until the emergence of so called non-equilibrium thermodynamics, or thermody-
namics of irreversible processes (Glandsdorff and I. Prigogine, 1971).

Non-equilibrium thermodynamics can scientifically explain why it is physi-
cally possible the occurrence of irreversible processes such as those within living
organisms which consume chemical energy in the form of nutrients, perform
work, and excrete waste as well as give off heat to the surroundings (for more
discussions, see Glandsdorff and Prigogine, 1971, Morowitz, 1972; Margineanu,
2001).

In the framework of P systems it seems appropriately to recall that Prigogine
who won the Nobel Prize in Chemistry in 1977 for his contributions to non-
equilibrium thermodynamics, stressed on the important contribution of Alan M.
Turing to the background of non-equilibrium thermodynamics. Working on a
new mathematical theory of morphogenesis based on showing the consequences
of non-linear equations for chemical reactions and diffusions, Turing (1952) was
the first to notice the possibility of bifurcations in chemical reactions, (“Turing
bifurcation"), which are essential for non-equilibrium thermodynamics (Glands-
dorff and Prigogine, 1971).

So far, mathematical tools used in Biology via Physics and Chemistry are
differential equations. However the emergence of P systems in 1998-2000 (Paun,
2000; 2001; 2002) opened a new era in the use of Mathematics in Biology because:
a) It was for the first time the biological realities (occurring mainly across biolog-
ical membrane), were used as raw material to abstract a calculus; b) it was a fur-
ther incentive for using the discrete Mathematics for the description/modelling
of discontinuous processes occurring within living cells.

The ontological fundament of P systems (apart from the inspiration of its
initiator, the chance etc.) seems to me to be the fact that the processes occurring
across biological membranes are genuine natural calculi performed by living cells.

Thus the claim is that chemical reactions and physical processes (e.g., trans-
port) within a cell are computing processes.

The emergence and flourishing of cell biology with special emphasis on mem-
brane biophysics, biochemistry, and molecular biology, generated knowledge con-
cerning discontinuous processes occurring across, within, and at biomembranes
(Alberts et al., 1994), knowledge that sustained the emergence of membrane
computing (P systems).

The introduction of chemistry and physics into biology mainly in the XXth
century produced a wealth of knowledge concerning the fluxes of mater and en-
ergy within a living cell. Thus it becomes evident that any biological system,

Biological Roots and Applications of P Systems: Further Suggestions 3

for instance, a living bacterium, is an open system which exchanges mater, en-
ergy, and information with its surroundings medium. These fluxes are possible
because some functional proteins are involved not only in processing matter and
energy but also in the flow of information within a cell (Bray, 1995). The flux
of information is illustrated, rather metaphorically than mathematically, by the
flux of genetic information from DNA to polypeptide during protein biosynthe-
sis, the function of axons and signal transduction, including chemotaxis (Mayer
1998; Bray 2002; Szurmant and Ordal, 2004; Martinez-Antonio et al., 2006).

Interesting for our topic, the biological community accepted that the function
of a neuron, including the generation and propagation of action potentials (AP),
is a computation performed by the cell (Segev and Schneidman, 1999; Alle and
Geiger, 2006).

The basic equations (see bellow) and quantitative description of the genera-
tion and propagation of action potentials (spike) is due to Hodgkin and Huxley
who won Nobel Prize in 1963. The authors supposed that in the nerve cell mem-
brane there are distinct ionic channels which allow the selective passage of either
sodium or potassium ions (see bellow). The experimental proof of the occurrence
of these channels came later on. Beyond its interest per se, this first quantita-
tive description of a major biological event, with a consistency which previously
seemed reserved to physics, has the merit of showing how a proper metaphor
can evolve into a truly mechanistic description (Margineanu, 2001).

This opinion is important for our topic, because:

— the so far work in P systems pushes the metaphor (cell computer, cell com-
puting, membrane computing) toward a mechanistic description;

— in the framework of P systems ions movement across biological membrane
(either via ionic channels or symport/antiport) is largely studied, while the
biochemical background of neuron function is the fact that axons typically
possess a high density of voltage-dependent, fast activated Na*t channels, as
well as more slowly activated KT channels;

— moreover, recently neuron function started to be copiously studied by the
specific tools and concepts of P systems (Ibarra et al., 2006; Ionescu et al.,
2006; Chen et al., 2006a, b, ¢, d).

The computation performed by the neuron concerns (Alle and Geiger, 2006):
i) the ability to control the number of APs, ii) the ability of at least some neurons
to control the timing of the spikes (Carr and Konishi, 1988), iii) subthreshold
membrane potentials (those potentials which per se do not generate an AP),
which have a role in the regulation of synaptic transmission (Alle and Geiger,
2006).

The occurrence of this analogue coding and AP coding (number and timing
of AP) is likely to enhance information capacity of synapses and may increase
the computational power of a network of neurons (Alle and Geiger, 2006). These
three ways to increase the computational power of (a network of) neurons could
receive more attention from P systems, for the benefits of both parts, I believe.

Another important aspect for P systems is the type of mathematics used
so far to model AP. As reviewed by Segev and Schneidman, (1999), following

4 I.I. Ardelean

the theoretical study of Hodgkin and Huxley most of the models of axon have
treated the generation and propagation of the AP using deterministic partial
differential equations although it is known that the underlying mechanism for
AP generation is the opening and closing of thousands of individual ion channels,
each of which is stochastic rather than deterministic (Segev and Schneidman,
1999). So far, based on partial differential equations of Hodgkin and Huxley, the
scientists developed a deterministic H&H model and a stochastic H&H model
(for more details see Segev and Schneidman, 1999) for spike generation.

For a very large number of channels (12,000 and 3,600 for sodium and potas-
sium, respectively) both deterministic and stochastic models give similar esti-
mations, whereas for, e.g., 12,000 and 3,600 for sodium and potassium channels
per patch, respectively, some differences started to appear. With the interest of
P systems to develop a hybrid metabolic algorithm capable of mixing the deter-
ministic and stochastic paradigms together (Bianco and Fontana, 2006) it seems
rational to expect contribution from P systems to also model the AP generation.

Important for P systems is the question whether or not the discrete formalism
would describe more accurately the process of spike generation, by one neuron or
by a limited number of neurons. Can the metaphoric membrane computing evolve
into a scientific truth, towards a mechanistic description? Based on the work in
the field of P systems, it seems appropriate to conclude that this metaphor is
actively evolving, as it seems natural to assume that discontinuous processes can
be appropriately described /modelled by discrete mathematics.

In the following I will briefly present two membrane-based biological processes
which I believe could be described in the (near) future as membrane comput-
ing processes: transport of ions and molecules across biological membranes and
chemotaxis (Ardelean, 2002).

The transport of ions and molecules across biological membranes is funda-
mental for cell structure and function. There are several ways to carry out this
transport (Saier, 1999). Here we will briefly focus on symport/antiport, because
1) this type of transport received significant attention in P systems (Paun, 2002),
symport and antiport being nice examples of how bacterial cells manage the de-
velopmental rules; 2) the P system tools used to describe symport and antiport
are appropriate to describe the function of, e.g., sodium and potassium channels
which sustain the function of neuron, the computing device recognized by biolo-
gists; 3) the proteins involved in symport and antiport (as well as other proteins
— see below) after extraction from natural membranes can be incorporated in ar-
tificial lipid membranes, while retaining the activity; this is a way for a possible
in vitro implementation of P systems (see below).

Symport is characterized by the fact that both ions are transported in the
same direction, whereas by antiport one ion is transported inside the cell while
the other ion is simultaneously transported in the opposite direction, outside
the cell. Both systems of transport, symport and antiport, are used by bacteria;
the symport of protons with different substances needed for bacterial growth
are very well documented (Jung, 2001). For example, Escherichia coli uses the
symport of protons with lactose, arabinose or galactose.

Biological Roots and Applications of P Systems: Further Suggestions 5

However, the proton is not the only type of ions used with antiport systems;
sodium ions are also used for the symport of substances such as melobiose and
proline. When it comes to antiport, one classical example is the proton/sodium
antiporters found in many bacteria, their major function being in maintaining
a rather constant concentration of both protons and sodium ions inside the cell
(Padan et al., 2001).

With the development of the mutual interplay between P systems and biol-
ogy, probably, the future is not so far when the image of a single (bacterial)
cell counting/computing the input and the output of ions and molecules via
symport/antiport proteins will be no more a metaphor but a truly mechanistic
description.

Chemotaxis, the movement of a bacterium (or other types of cells) toward
a needed chemical factor/item (called attractant) or away from a dangerous
chemical (called repellent) is one example of cell behavior involving fluxes of
matter, energy, and information. This behavior is essential for bacterial survival.

Chemotaxis allows the bacterium to actively move towards the needed sub-
stance (or more precisely, towards the increase in the gradient concentration of
that substance); for example, oxygen respiring bacteria move towards (optimal)
oxygen concentrations (= aero taxis).

Chemotaxis also allows the bacterium to try to escape from a substance that
is toxic for it (a poison, for example). In a living bacterium (cell, in general) the
movement towards a factor (e.g., molecular oxygen) is related to the orientation
toward that factor. For example, magnetotactic bacteria contain inside the cell
specific particles/structures called magnetosome which consist of magnetic iron
mineral particles enclosed within a membrane. The specific functional character-
istic of magnetotactic bacteria is magnetotaxis, the orientation along the Earth
geomagnetic field lines (Blakemore, 1975). Magnetotaxis is determined by the
presence of magnetosomes; dead cells containing magnetosomes also align along
the geomagnetic field lines whereas living MTB with no magnetosomes, do not
align.

Chemotaxis is important for P systems (and natural computing in general)
because the coordinated movement and binding of molecules within and chemical
reactions across the cell membrane sustain the emergence of macroscopic (at the
level of several centimeters) information-oriented behavior. The claim is that
a taxi is a membrane-computing process whose study would be significantly
improved by adding P systems to the plethora of methods and concepts which
are contributing to the blossom of this topic.

The overall process of chemotaxis involves the following four integrated stages,
very shortly presented here (for more biochemical essential details, see Armitage,
Backer et al., 2006; Szurmant and Ordal, 2004; Ardelean and Besozzi, 2006).

1. Signal recognition and transduction is performed by receptor proteins. Re-
ceptor proteins are usually transmembrane, multidomain proteins, which
contain a sensing domain that interact with the environmental signal (oxygen
concentration, for example) and, through series of chemo-physical changes
induce further changes in the signalling domain, changes which further enter

6 I.I. Ardelean

the second stage, excitation. Interestingly, in E. coli as in other cells where
the receptors have an extra-membrane domain, the localization of the recep-
tors is around the poles of the cells, and not uniformly over the whole cells
surface (see below)

2. Excitation. The main protein of this stage is an intracellular sensor kinase
called CheA kinase (CheA), which autophosphorylates, and the phosphoryl
group is subsequently transferred from CheA to CheY. In the phosphorylated
form, as CheY-P, this protein binds to an assembly of proteins called the
“switch", at the base of the flagellar motor, thus controlling the direction of
the flagellar rotation.

3. Adaptation. This is very important for bacterial taxis because requires the
ability to recognize when the bacterium is moving in the wrong direction,
i.e., away from the higher attractant concentration (Szurmant and Ordal,
2004). To do that, a “memory" is required that is able to indicate whether
higher or lower concentration are being reached.

4. Signal removal means the biochemical removing of phosphate from CheY-P;
the resulting dephosphorylated form (CheY) binds no more on the flagellum.

In my opinion, adaptation and signal removal could offer fruitful space for
cross talk between biology and P systems.

3 Applications of P Systems

So far, the main applications of P systems are in biology, computer sciences,
linguistics, and membrane software (Ciobanu et al., 2006). Here, I will shortly
present those application in biology to which I had the chance to work on together
with P system scientists and other computer scientists.

3.1 Membrane Proteins: Terminal Respiratory Enzymes and
Photosystem 11

We tried to compare the probabilistic mathematical model with the biological
reality, indicating how one can use the P systems framework to simulate the
process of respiration in Escherichia coli and Synechocystis PCC 6803, the cor-
responding proton pumping by cytochrome c oxydase in Anacystis nidulans, the
interplay between oxygen consumption and oxygen production by photosystem
II (PSII) in Synechocystis PCC 6803 even in the presence of a specific synthetic
inhibitor of PSII. We also showed how to interpret the obtained results in a way
to infer useful results for biologists (Ardelean and Cavaliere, 2006; Cavaliere and
Ardelean, 2006).

This work has been done in the framework of P systems because we believe
that the emergence of P systems together with its cross talk with biologists could
be for biology as important and fruitful as it was, and still it is, the introduction
of physics and chemistry in biology, almost two centuries ago.

We have presented a comparison between the mathematical model (and the
software realized) and the real world, trying to establish a link between the math-
ematical framework, the simulator realized (Cavaliere, 2003), and the biological

Biological Roots and Applications of P Systems: Further Suggestions 7

reality. We introduced new concepts in the P system area such as the availability
of a chemical reaction, the activity rate of a catalyst, and the possibility for a
catalyst to be at same time active or not active.

I will briefly recall some more important achievements concerning respiration
(for more details and modeling of proton pumping and the interplay between
oxygen consumption and oxygen production by PSII in cyanobacteria, please
see Cavaliere and Ardelean, 2006).

Respiration is the biological process that allows the cells (from bacteria to
humans) to obtain energy. In short, respiration promotes a flux of electrons
from electron donors to a final electron acceptor, which in most cases is the
molecular oxygen.

In Escherichia coli, as well as in other bacteria, the cell ability to consume
molecular oxygen during the respiration is determined by the presence of two dif-
ferent enzymes that catalyze the final step of respiration: the reduction of molec-
ular oxygen with protons and electrons. In FEscherichia coli, these two terminal
oxydases (enzymes) — called terminal because they are the last components of
the respiratory electron transport pathways — are cytochrome bd and cytochrome
bo.

For example, it is know that at low oxygen concentration in the growing
medium (lower than about 40% of oxygen saturation) the cytochrome bd oxydase
is responsible for the entire respiratory activity of the cells; in other words, the
flux of electrons to molecular oxygen proceeds 100% through the cytochrome
bd oxydase. At high oxygen concentration in the growing medium (this means
in between 90% and 100% of oxygen saturation), the cytochrome bo oxydase is
responsible for almost the entire respiratory activity of the cells. Furthermore,
in between 40% and 90%, the two types of terminal oxidases contribute together
to the respiration of the cell.

We used the probabilistic P systems software to model the respiratory oxygen
consumption when only cytochrome bd oxydase or only cytochrome bo oxydase
or both terminal oxydases are active in intact cells. These simulations are in
agreement with experimental results sustaining our claim that the software could
be used to perform in silico experiments in order to estimate, based on new
experimental results on E. coli, the contribution of each terminal oxidase to the
overall respiratory oxygen consumption in given environmental conditions. We
also believe that the software can be used to model the respiration in other
bacteria having two terminal oxiadses, even if they have different affinities for
oxygen than the terminal oxidases in E. coli.

In the near future, we plan to model other biological processes with more
biological details considering the concept of affinity introduced in our simula-
tor by the so-called probability to win and the concept of availability of a rule,
modeled in the software by the probability of a rule to be available; in partic-
ular it would be very useful to add to the simulator the ability to change, in
run-time, the values of some of the biological parameters considered (like the
affinity of an enzyme, that, for example in Escherichia coli, changes according
to the concentration of molecular oxygen in the substrate); in this way, we can

8 I.I. Ardelean

improve at the same time the simulator and the mathematical model presented,
as well as making possible new applications in microbiology. In this respect, the
requirement /ability of the P system software to pay attention to every single
occurrence of each molecule of either cytochrome bd oxydase and cytochrome bo
oxydase, opens the question concerning the usefulness of this software for mod-
eling the activity of a single molecule, a single cell, etc., which is a major trend
in nowadays science (see further prospects below).

3.2 Membrane Proteins: Mechanosensitive Channels

The activity of mechanosensitive channels of large conductance (MscL, in short)
in cellular membranes was modeled within the framework of P systems (Arde-
lean et al, 2006), based on the opinion (Ardelean, 2003) that discrete math-
ematics could be more appropriate than continuous mathematics to describe
non-continuous molecular events (such as channels opening and closure).

Mechanosensitive channels are protein-based channels gated by mechanical
forces. In Gram-positive and Gram-negative bacteria, MscL is located in the
cell membrane. This location in bacteria can be correlated to its physiological
function, the protection against severe osmotic downshifts. The major role of
Msc under osmotic downshift is to allow the rapid exit of different chemicals
(ions and rather small molecules), and hence the sudden decrease of the osmotic
pressure inside the cell. Thus, by the opening of MscL the osmotic pressure
inside the cell approaches the osmotic values of the extracellular medium. This
event is fundamental for bacterial cell because, when the difference between
osmotic pressure inside the cell and osmotic pressure outside the cell is too
large, the integrity of the cell can be damaged by disruption of cell wall and
plasma membrane, followed by cell death.

In the paper (Ardelean et al., 2006) we defined in wvitro and in vivo distinct
models that consist of some basic components: an environment, a region, and
a membrane tension, which naturally correspond to essential aspects of MscL
activity. We also introduced probabilities associated to evolution rules in order to
achieve a closer resemblance to biological reality. Moreover, we defined evolution
rules according to in wvitro and in vivo different environmental events. With in
vitro model we focused on a single mechanosensitive channel (MscL) thus arguing
that P systems are appropriate to describe single items, single events. The study
of a single molecule, cell, etc. is a major trend in nowadays science, including
microbiology and P systems could be the mathematical formalism of this growing
trend (see further prospects below). We claimed that in vitro model can be easily
extended to describe and simultaneously analyze multiple occurrences of MscL.
We gave some notes about in silico simulations of the in wvitro model, using
EdnaCo, a complex systems simulator that can be used as a distributed discrete-
event simulation environment (Garzon et al., 2000), and showed some results,
such as the emergent behavior over time of membrane tension, conductance, and
current of channels.

In vitro and in vivo P models might propose a platform for the integration of
the data obtained on MscL in prokaryotes. Thus, we are actively expecting that

Biological Roots and Applications of P Systems: Further Suggestions 9

the further refinement of our models (also by means of the software environment
used to run simulations), would accelerate the integration between in vitro and in
vivo results. Moreover, with the explosion of molecular biology and the increase
in the quantity and quality of data obtained by high throughput technologies,
there is a trend in nowadays biology to pass from a reductionistic approach to
an integrative approach (Palsson, 2000), either at supermolecular level (Hartwell
et al., 1999) or at systemic level (Palsson, 2000; Kitano, 2002). Indeed, the
reductionistic approach and the systemic, integrative approach, are today on
the same side of the barricade, a totally different position than four-five decades
ago when both approaches started to flourish in biology (Mayer, 1998). In this
perspective, the correlation between in vitro and in vivo results represents one of
the most important trends in the biological research, and the models mentioned
in this chapter could give an important contribution to it.

Moreover, I put forward the claim that P systems could be the framework
to develop the appropriate mathematical formalism for a cross talk between
the reductionistic approach and the systemic, integrative approach (the further
contribution from continuous mathematics is not excluded at alll).

4 Further Suggestions for P Systems

The basic suggestion concerns the need to continue the use of P systems to model
discrete, discontinuous processes in the living world.

So far, the scientist used differential and integral calculus to describe continu-
ous processes as well as discrete, discontinuous processes in biology (or in other
sciences). A common strategy to figure out such equations consists in writing
down equilibrium conditions for infinitely small physical units such as time units,
dt, and spatial volume units, ds (Bianco et al., 2006); the scientist claim for the
validity of this approach takes into account the assumption that the system is
composed of a great number of undistinguishable particles (for more discussions
see Margineanu, 2001).

In my opinion, the success of differential and integral calculus in modeling
discrete processes (e.g., the kinetic of enzymatic reactions, ionic processes at the
neuron plasma membrane, etc.) was based — apart from the above argument
— on the fact that no discrete mathematical approach has been used to model
biological processes. Fortunately, since the birth of P systems several interesting
approaches have been already published on the use of discrete mathematics to
model discrete biological processes.

Manca introduced the P metabolic algorithm (PMA) whose (main) princi-
ples are the followings (for more details, see Manca, 2006): i) rules compete for
object populations; ii) objects are allocated to rules according to a mass par-
tition principle; iii) partition factors are determined by reaction maps, and iv)
a “metabolic rule" r consumes/produces integer multiples of a reaction unit u,
which generalizes the notion of molar unit. (Manca, 2006).

Metabolic P systems have several computational advantages with respect to
differential models, but their most important aspect is their direct biological

10 I.I. Ardelean

meaning and their structure where the reaction level and the regulation level are
clearly interconnected, but separated (Manca, 2006). PMA were successfully used
in simulations concerning the evolution of several relevant biological processes
such as Prey-predator Lotka-Voltera dynamics, leukocyte selective recruitment
in immune response, protein kinase C activation, circadian rhythms, mitotic
cycle, etc. (for more details, see Manca, 2006, and the references herein).

In turn, Pérez-Jiménez (2006) proposed a mesoscopic approach which is more
tractable than the microscopic chemistry, but it provides a finer and better un-
derstanding than macroscopic chemistry modeled by ordinary differential equa-
tions. A deterministic waiting times algorithm has been introduced, based on
the fact that in vivo chemical reactions take place in parallel in an asynchronous
manner. The strategy has been illustrated with the simulation of two important
biological phenomena: the epidermal growth factor receptor signalling cascade
(Pérez-Jiménez and Romero- Campero, 2005) and FAS-induced apoptosis. The
simulations performed by the authors show good correlations with both the data
reported in the literature and simulations based on ordinary differential equa-
tions (more details, in Pérez-Jiménez, 2006).

All these results show that P systems can successfully compete with ordinary
differential equations in producing good simulation of biological processes; and
probably this is only the beginning.

However, even these approaches were done assuming a great number of (al-
most) undistinguishable particles/objects (e.g., enzymatic molecules, etc.), a
ground where the competition with continuous mathematics appears to be hard.

In my opinion, P systems should “attack" (just to use o common concept
in military art, or in the game of GO) on the territory where differential and
integral calculus are not valid at all: the space of a single event, single occurrence
of a catalyst (enzyme, mechanosensitive channel etc.).

The chance is that in nowadays science there is a strong trend toward the study
of single events or objects (molecule, cell, etc.). To argue that, I will briefly focus
on microbiology. Single cell microbiology (SCM) is a trend in microbiological
sciences which allows the study of an individual cell from a population (Brehm-
Stecher and Johnson, 2004). The development of SCM roots in the technical
advances in other sciences (mainly physics and biochemistry) where special tools
were developed. The advances in SCM are already copious and already a first
authoritative review has been written on this topic (Brehm-Stecher and Johnson,
2004). It is beyond the scope of this contribution to present the state of the art
of SCM; I will mention only a few achievements in SCM, which, in my opinion,
are very appropriate to be further modelled by P systems.

a) SCM allows the observation of discontinuous and dynamical processes within
living (bacterial, yeast, etc.) cells with high spatial and/or temporal resolu-
tion. An example is the specific distribution at the cell surface of some recep-
tors (receptor clustering) involved in chemataxis. More precisely, it started
to be shown that the protein acting as receptors in bacterial chemotaxis are
not distributed uniformly at the surface of the E. coli cell, the main local-
ization being at one pole of the cell (Bray, 2002) — it should be reminded

Biological Roots and Applications of P Systems: Further Suggestions 11

that E. coli is an almost cylindrical cell. This polarized distribution of pro-
tein receptors in space is an on growing topic in microbiology and it could
be interesting for P systems at least as a new type of communication rules,
in which the position, the density of the interacting “letters" (symbols) is
essential for the rule to occur.

The interest and the power of P systems for the exploration of space is
illustrated by the proposal of extended P systems able to perform a global
description of membrane proteins populations, in order to take care of the
synergic work of many membrane proteins and the related effect for cell’s
life (Besozzi and Rozenberg, 2006). These developments could be a further
challenge for P systems to develop their applications in those domains where
spatial distribution of objects is very important: collective sports (football
etc.), military strategy, and games such as chess, GO, etc.

SCM allows the interplay between microscopic (in the sense of biology),
mesoscopic, and macroscopic properties of microbial population, with em-
phasis on the cellular origins of mesoscopic and macroscopic properties.
For example, coordinated movement of cells (e.g., traveling waves, whirls,
and jets) within population of myxobacteria or Bacillus subtilis have been
studied at cellular level integrated in the population level (more details, see
Brehm-Stecher and Johnson, 2004). Similar movements have been described
in magnetotactic bacteria whose study of movement of each individual cell
still waits. So far, classical microbiology has traditionally been concerned
with and focussed on the studies at the population level. Nowadays, with
the emergence of SCM, microbiology faced the same problem: the connec-
tion between macroscopic (= population) level behavior with microscopic
(= cellular, in biology) level. Long time ago, thermodynamics solved this
problem by differential and integral calculus. The nowadays answer of mi-
crobiology can be based on the use of P system to describe discrete processes
based either on single, small or huge (statistically relevant) numbers of cells.
Furthermore, with the development of appropriate tools and techniques to
study discrete realities such as a single individual microbial cell, there is the
need for discrete models whose appropriate description seems naturally to
be founded on discrete mathematics, P systems appearing as a very powerful
candidate for this task.

The analytic progress of microbiology towards the study of single individual
cells raised new theoretical problems. Because of the fact that the experi-
ment and its control cannot be carried out on the same individual cell, it
is impossible to be sure that the observation/measurements itself does not
affect the cell. This statement is the biological equivalent of Heisenberg’s
“uncertainty principle" (for more details, see Brehm-Stecher and Johnson,
2004).

SCM has a large significance not only in basic science but also in applied
science, mainly with respect to microbial heterogeneity related to antibi-
otic and biocide resistance, productivity and stability of industrial microbial
based biotechnologies or the potential of pathogens to cause disease (see
more details in Brehm-Stecher and Johnson, 2004, and references therein).

12 I.I. Ardelean

e) Single molecule kinetics, a growing topic in biochemistry (Shi et al., 2006)
could be performed not only in wvitro but also in vivo, in a single cell ap-
proach, and P systems could be more appropriate in modeling the single
molecule kinetics than Michaelis-Menten differential equations, whose basic
assumption that enzyme-substrate concentration are continuous variables
seems not to be valid at the microscopic level.

Thus, it seems rational to conclude (and expect for the near future)
that P systems, could offer the appropriate software for the description of
discrete biological processes (such as those related to SCM), and that mem-
brane computing will be used to model the experimental data obtained on
single cells (molecules, etc.) not only in basic science (e.g., mechanosensitive
channel behavior, enzymes, enzymatic cascade, etc.), but also in applied sci-
ence such as the contribution of the sensibility of each individual cell from
a population against a given substance, for the design of biocides.

In conclusion, I suggest that:

1. P systems are invaluable to describe discrete processes performed by: i) single
objects: catalytic molecules (= enzymes); supramolecular structures (MscL,
porins, ionic channels, etc.), single cells, and ii) a small number of objects
occurring in the sample, e.g., several mechanosensitive channels occurring
within a membrane patch. Furthermore, P systems could be valuable tools
to describe discrete processes performed by a statistically significant number
of undistinguishable particles.

2. The use of P system to write a software able to manage the wealth of infor-
mation obtained from different types of arrays: DNA- arrays, protein-arrays,
enzymes. One requirement with these arrays is the rapid and correct process
of information produced by them. Again, a reading tip leaded/controlled by a
discrete programme based on discrete mathematics would be more successful
to monitor a discrete process (arrays function) than a classical programme.

3. The already started interplay between P systems and ordinary differen-
tial equations (Pérez-Jiménez, 2006; Manca, 2006) supports the proposal
to develop a discrete formalism for discrete processes performed by sin-
gle molecules/structures as shown for mechanosensitive channel in bacteria
(Ardelean et al., 2006).

4. Towards an in vitro implementation of P systems. The progresses made in the
last four decades in incorporating different biological molecules into artificial
membranes(e.g., black lipid membrane — BLM) has lead to major progresses
in understanding their in wvivo function (Ottowa and Tien, 2002). In the
next table there are presented some reconstituted systems within artificial
membranes, with emphasis on original application for a possible in wvitro
implementation of P systems.

The incorporation of different active (mainly) protein molecules in artificial
membranes opens the possibility to move objects across these membranes, and
to perform a calculus. In Figure 1 sodium/proton antiporters (a) incorporated
in BLM are used to selectively transport, object by object, the sodium ions

Biological Roots and Applications of P Systems: Further Suggestions 13

Table 1. The main results on artificial membrane research (from Ottowa and Tien,
2002) with suggestion on their usefulness for the in vitro implementation of P systems

Period |Main results Significance for P systems
First |Technique for BLM formation; The model of a single
decade |excitability inducing material, discrete channel;

(1961 |channel conductance; antigen antibody, kinetic model of enzymatic
1970) |enzyme substrate interactions reaction based on P systems

photoelectric effects
Second|Models for the plasma membrane of cells, |The study of discontinuous
decade |the nerve membrane, the cristae membrane|bioenergetic processes
(1971 |of mitochondria, the thylakoid membrane |based on electron transfer

1980) |of the chloroplast, the visual receptor (respiration, photosynthesis
membrane of the eye, and many others, etc) to write a discrete
last but not the least, a model for the model for them in order to

purple membrane of H halobium; ion
channel reconstruction

Third |Molecular mechanisms of membrane construct stable microdevices
decade |processes; supported BLMs on metal as hardware components of
(1981 |substrates (s BLMs); mechanisms of a P systems based computer

1990) |photosynthesis, membrane bioenergetics
Solar energy utilization via semiconductor
septum electrochemical photovoltaic cells;

electroporation
Fourth [Supported BLMs on hydrogels The construction of a
decade|(sb BLMs), tethered (t BLMs) Supported |P systems based computer
(1991 |BLM based sensors and devices having a P system based
2001) |Molecular mechanisms of membrane software

processes; BLM based biotechnology and
molecular electronics; DNA BLM
interactions

from the first compartment to the third one. The initial (A) and the final (B)
configurations are different, a sequence of transitions occurring in between these
two states.

This kind of experiments could lead to the construction of P systems-based
computers. In my opinion, these experiments (with antiporters or any other ac-
tive molecule biologically produced or chemically synthesized, but arranged in
an appropriate way within the artificial membrane) could be for P systems what
are DNA experiments for DNA computing: in vitro use of molecules to calculate.
Moreover, there are the following advantages of in vitro membrane computing
as compared with DNA computing: i) The speed of these processes occurring at
membranes (both artificial and natural (seconds, minutes) is much higher as com-
pared with DNA computing experiments, thus leading to a faster computation.
ii) The process will occur at a membrane which can function as a microdevice.
Furthermore, planar BLMs can now be formed on various substrates with long-
term stability, thereby opening the way for basic research and developments

14 I.I. Ardelean
1 2 3
Na*—p—~— . Na‘—p~~ H+
Na+ < \?) H+ Na H+ < N/ H+
Na+* —~ Na* N H+ H*
Na+ Na+) H* Na+ H N~ H+ H+
/\ H+ f\
Nat* N 7 Nar H M H ®
H* L~ Na+ Na* |~ Na* ..
H+) H e M a
+ H+) + +) Na+
H () H Nat Na* () .
s a H [~ Na+ Na
H* . : .
He () H Nar KA Na

Fig. 1. Schematic representation of an imaginary BLM experiment used to move across
an artificial membrane sodium ions from compartment 1 to compartment 3. If the
activity of each single antiporter (a) or of a small number of antiporters could be
appropriately controlled, the device thus obtained should be useful for the in wvitro
implementation of P systems.

work in biotechnology (Ottowa and Tien, 2002). iii) In many in vitro recon-
stituted systems at/within artificial membranes the output is an electric signal,
either current or potential. That could facilitate the transfer of information from
one in vitro structure to another one, as well as the building up of complex hier-
archical structures, using the already acquired knowledge and skills used in the
construction of to day computers.

Furthermore, in artificial membranes one could incorporate molecules which
function as molecular logic gates such as those active in respiration (Ardelean
et al., 2004). Moreover, very recent results show that it is possible to improve
the structure of artificial vesicle membranes by coating hollow polyelectrolyte
capsules with biological interfaces such as phospholipids membrane and pro-
teins (Moya and Toca-Herrera, 2006), a step toward an artificial cell assembly
(Noireaux and Libchaber, 2004). The results in artificial membrane research
support the hope that they are appropriate tools for in vitro P systems-based
experiments.

In conclusion, I claim that P systems are very appropriate to model the func-
tion of single objects (cell, channel, enzyme, etc.) and suggest that in vitro im-
plementation of P systems could be done by the use of artificial membranes, a
step towards computations with artificial membranes.

Biological Roots and Applications of P Systems: Further Suggestions 15

Acknowledgements

Thanks are due to my main two co-authors, Daniela Besozzi and Matteo Cava-
liere, to all the co-authors, S. Aguzzoli, M.H. Garzon, M. Gheorghe, B. Gherla,
G. Mauri, C. Manara, V. Mitrana, D. Sburlan, S. Roy, and to all P scientists
I had the chance to exchange ideas within a fruitful framework. Special thanks
are due to D.G. Margineanu and to S. Szedlacseck for helpful discussions and
suggestions on thermodynamics in biology and single enzyme activities, respec-
tively. Lorentz Center and PNCDI-CERES (contract 84/2004) are acknowledged
for financial support to attend the workshop, and Lucia Dumitru (Head, Centre
of Microbiology) for interest in this topic.

References

1. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, J.D. Watson: Molecular Biology
of the Cell. 3rd ed., Garland Publishing, New York, 1994.

2. H. Alle, J.R.P. Geiger: Combined analogue and actin potential coding in hippocam-
pus mossy fibres. Science, 311 (2006), 1290-1293.

3. I.I Ardelean: The relevance of biomembranes for P systems — general aspects.
Fundamenta Informaticae, 49, 1-3 (2002), 35-43.

4. I.I. Ardelean: Molecular biology of bacteria and its relevance for P systems. In
Membrane Computing, LNCS 2597 (Gh. Paun, G. Rozenberg, A. Salomaa, C. Zan-
dron, eds.), Springer-Verlag, Berlin, 2003, 1-19.

5. L.I. Ardelean, D. Besozzi, M.H. Garzon, G. Mauri, S. Roy: P system models for
mechanosensitive channels. In Applications of Membrane Computing (G. Ciobanu,
Gh. Paun, M.J. Pérez-Jiménez, eds.), Springer-Verlag, Berlin, 2006, 43-81.

6. I.I. Ardelean, D. Besozzi, C. Manara: Aerobic respirations a bio-logic circuit con-
taining molecular logic gates. Pre-Proc. of Fifth Workshop on Membrane Comput-
ing, WMC5 (G. Mauri, Gh. Patin, C. Zandron, eds.), Universita’ di Milano-Bicocca,
June 14-16, 2004, 119-125.

7. LI. Ardelean, M. Cavaliere: Modelling biological processes by using probabilistic P
system software. Natural Computing, 2 (2003), 173-197.

8. J.P. Armitage: Bacterial tactic responses. Adv. Microb. Physiol., 41 (1999), 229
289.

9. M.D. Baker, M. Peter, P.M. Wolanin, J.B. Stock: Systems biology of bacterial
chemotaxis. Current Opinion in Microbiology, 9 (2006), 1-6.

10. D. Besozzi, G. Rozenberg: Extended P systems for the analysis of (trans)membrane
protein populations. In Pre-Proceedings of 7th Workshop on Membrane Computing
(H.J. Hoogeboom, Gh. Paun, G. Rozenberg, eds.), 17-21 July 2006, Leiden Center,
8-10.

11. L. Bianco, F. Fontana, G. Franco, V. Manca: P systems for biological dynamics. In
Applications of Membrane Computing (G. Ciobanu, Gh. Paun, M.J. Pérez-Jiménez,
eds.), Springer-Verlag, Berlin, 2006, 81-126.

12. L. Bianco, F. Fontana: Towards a hibrid metabolic algorithm. In Pre-Proceedings
of 7th Workshop on Membrane Computing (H.J. Hoogeboom, Gh. Pdun, G. Rozen-
berg, eds.), 17-21 July 2006, Leiden Center, 145-158

13. R.P. Blakemore: Magnetotactic bacteria. Science, 190 (1975), 377-379.

14. D. Bray: Protein molecules as computational elements in living cells. Nature, 376
(1995), 307-312.

16

15

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

35.

I.I. Ardelean

D. Bray: Bacterial chemotaxis and the question of gain. PNAS, 99 (2002), 7-9.

. B.F. Brehm-Stecher, E.A. Johnson: Single-cell microbiology: tools, technologies,

and applications. Microbiol. Mol. Biol. Rev., 68 (2004), 538-559.

C.E. Carr, M. Konishi: Axonal delay lines for time measurement in the owl’s brain-
stem. Proc. Natl. Acad. Sci., 85 (1988), 8311-8315.

M. Cavaliere: Evolution-communication P systems. In Membrane Computing (Gh.
Paun, G. Rozenberg, A. Salomaa, C. Zandron, eds.), LNCS 2597, Springer-Verlag,
Berlin, 2003, 134-145.

M. Cavaliere I.I. Ardelean: Modelling respiration in bacteria and respira-
tion/photosynthesis interaction in cyanobacteria. In Applications of Membrane
Computing (G. Ciobanu, Gh. Piun, M.J. Pérez-Jiménez, eds.), Springer-Verlag,
Berlin, 2006, 129-159.

H. Chen, R. Freund, M. Ionescu, Gh. Paun, M.J. Pérez-Jiménez: On string lan-
guages generated by spiking neural P systems. In RGNC Raport 02/2006, Fenix
Editora, Sevillia, 2006, 169-195.

H. Chen, M. Ionescu, T.-O. Ishdorj: On the efficiency of spiking neural P systems.
In RGNC Raport 02/2006, Fenix Editora, Sevillia, 2006, 195-207.

H. Chen, M. Ionescu, A. Paun, Gh. Paun, B. Popa: On trace languages generated
by spiking neural P systems. In RGNC' Raport 02/2006, Fenix Editora, Sevillia,
2006, 207-225.

H. Chen, T.-O. Ishdorj, Gh. Paun: Computing along the axon. In RGNC Raport
02/2006, Fenix Editora, Sevillia, 2006, 225-241.

H. Chen, T.-O. Ishdorj, Gh. Paun, M.J. Pérez-Jiménez: Spiking neural P systems
with extended rules. In RGNC Raport 02/2006, Fenix Editora, Sevillia, 2006, 241
267.

G. Ciobanu, M. Pérez-Jiménez, Gh. Paun, eds.: Applications of Membrane Com-
puting. Springer-Verlag, Berlin, 2006.

A. Ciures, D. Margineanu: Thermodynamics in biology: an intruder? J. Theor.
Biol., 28, 1 (1970), 147-150.

M.H. Garzon, E. Drumwright, R.J. Deaton, D. Renault: Virtual test tubes: A new
methodology for computing. In Proc. 7th Int. Symposium on String Processing and
Information Retrieval, A Corunna, Spain, IEEE Computer Society Press, 2000,
116-121.

P. Glandsdorff, I. Prigogine: Thermodynamics of Structure, Stability and Fluctua-
tions. Wiley-Interscience, New York, 1971.

L.H. Hartwell, J.L. Hopfield, S. Leibler, A.W. Murray: From molecular to modular
cell biology. Nature, 402 (1999), C47-C52.

O.H. Ibarra, A. Paun, Gh. Paun, A. Rodriguez-Paton, P. Sosik, S. Woodworth:
Normal forms for spiking neural P systems. In RGNC' Raport 03/2006, Fenix Edi-
tora, Sevillia, 2006, 105-137.

M. Ionescu, Gh. Paun, T. Yokomori: Spiking neural P systems. Fundamenta Infor-
maticae, 71, 2-3 (2006), 279-308.

H. Jung: Towards the molecular mechanism of Na/solute symport in prokaryotes.
Biochem. Biophys. Acta, 1505 (2001), 131-143.

H. Kitano: Systems biology — A brief overview. Science, 295 (2002), 1662-1664.
V. Manca: MP systems approaches to biochemical dynamics: biological rhythms
and oscillations. In Pre-Proc. of Workshop on Membrane Computing (H.J. Hooge-
boom, Gh. Paun, G. Rozenberg, eds.), 17-21 July 2006, Lorentz Center, Leiden,
40-53.

V. Manca: Topics and problems in metabolic P systems. In RGNC' Raport 03/2006,
Fenix Editora, Sevillia, 2006, 173—-184.

36

37.
38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Biological Roots and Applications of P Systems: Further Suggestions 17

A. Martinez-Antonio, J.S. Chandra, H. Salgado, J. Collado-Vides: Internal-sensing
machinery directs the activity of the regulatory network in Escherichia coli. Trends
in Microbiology, 1 (2006), 22-27.

E. Mayer: This is Biology. The Belknap Press of Harvard University Press, 1998.

D.G. Margineanu: From metaphor to mechanism in membrane biophysics. Rev.
Quest. Scient., 172 (2001), 277-292.

H.J. Morowitza: Entropy for Biologists. An Introduction to Thermodynamics. Aca-
demic Press, New York, 1972.

S.E. Moya, J.L. Toca-Herrera: From hollow shells to artificial cells: biointerface
engineering on polyelectrolyte capsules. J. Nanosci. Nanotechnol., 6 (2006), 1-9.

V. Noireaux, A. Libchaber: A vesicle bioreactor as a step toward an artificial cell
assembly. PNAS, 101 (2004), 17669-17674.

A. Ottova, H.T. Tien: The 40th anniversary of bilayer lipid membrane research.
Bioelectrochemistry, 56 (2002), 171-173.

E. Padan, M. Venturi, Y. Gercham, N. Dover: Na/H antiporters. Biochem. Biophys.
Acta, 1505 (2001), 144-157.

B. Palsson: The challenges of in silico biology. Nature Biotechnology, 18 (2000),
1147-1150.

A. Paun, Gh. Pdun: Small universal spiking neural P systems. In RGNC Raport
03/2006, Fenix Editora, Sevillia, 2006, 213-235.

Gh. Paun: Computing with membranes. Journal of Computer and Systems Sci-
ences, 61 (2000), 108-143.

Gh. Pdun: From cells to computers using membrane (P systems). BioSystems, 59
(2001), 139-158.

Gh. Paun: Membrane Computing. An Introduction. Springer-Verlag, Berlin, 2002.
M.J. Pérez-Jiménez: P systems based modelling of cellular signalling pathways.
Pre-Proc. of Workshop on Membrane Computing (H.J. Hoogeboom, Gh. Piun, G.
Rozenberg, eds.), 17-21 July 2006, Lorentz Center, Leiden, 54-74.

M.J. Pérez-Jiménez, F.J. Romero-Campero: A study of the robustness of the EGFR,
signalling cascade using continuous membrane systems. LNCS 3651, Springer-
Verlag, Berlin, 2005, 268-278.

M.H. Saijer: Genome archaeology leading to the characterization and classification
of transport proteins. Curr. Op. Microbiol, 2 (1999), 555-561.

I. Segev, E. Schneidman: Axons as computing devices: Basic insights gained from
models. J. Physiol., 93 (1999), 263-270.

J. Shi, J. Dertouzos, A. Gafni, D. Steel, B.A. Palfey: Single-molecule kinetics re-
veals signatures of half-sites reactivity in dihydroorotate dehydrogenase A catalysis.
PNAS, 103 (2006), 5775-5780.

H. Szurmant, G.W. Ordal: Diversity in chemotaxis mechanisms among the bacteria
and Archaea. Microbiol. Mol. Biol. Rev., 68 (2004), 301-319.

A.M. Turing: The chemical basis of morphogenesis. Phil. Trans. R. Soc. London,
B, 237 (1952), 37-72.

Formalizing Spherical Membrane Structures and
Membrane Proteins Populations

Daniela Besozzi' and Grzegorz Rozenberg?

! Universita degli Studi di Milano
Dipartimento di Informatica e Comunicazione
Via Comelico 39, 20135 Milano, Italy
besozzi@dico.unimi.it
2 Leiden Institute of Advanced Computer Science, Leiden University
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

rozenber@liacs.nl

Abstract. We present a formalization of membrane structure by using
a parametric 2-dimensional spherical surface, where membrane proteins
reside and can move, according to prescribed operations. A more de-
tailed formalization of membrane proteins acting as transporters is also
given, thus possibly allowing a global scale analysis of ion flows across
a membrane. Several other applications, both biology and computation
oriented, are proposed.

1 Introduction

Membrane proteins have many different structures, and perform a whole variety
of tasks: they help in regulating the selective permeability of the membrane, the
cell signaling and membrane trafficking. Membrane proteins are called periph-
eral, when they are anchored to the internal or external layer of the membrane,
and integral (or transmembrane), when they span the bilayer and face both sides
of the membrane. Several important cellular processes, such as the muscle con-
traction, the transmission of electric impulses in neurons, the response to envi-
ronmental nutrients, etc., are regulated by different solutes concentrations inside
and outside the cell, or by the activation and amplification of specific molecules
(called the second messengers) inside the cell. Both phenomena are mediated by
transmembrane proteins which, in the case of transporters (involved in the ac-
tive or passive transport of solutes) allow the selective passage of ions (or other
small molecules) inwards or outwards, while in the case of membrane receptors
transduce an external signal towards a downhill chain of reactions inside the cell.

Some basic features of different types of transmembrane proteins were already
formalized in the framework of membrane computing (|28,30]), taking into ac-
count well known biological notions and the established mechanistic model about
the functioning of (single) membrane proteins. For instance, a membrane system
model for describing and simulating the activity of mechanosensitive channels
of large conductance is given in [6] - these channels are transmembrane proteins
gated by mechanical forces exerted on the membrane, and their role is the pro-
tection against severe osmotic downshifts in the cell. A similar approach was

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 18-41, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Formalizing Spherical Membrane Structures and MP Populations 19

considered in [9], where a P system model is proposed for the functioning of the
sodium-potassium pump, and in [14,26], where the activity of calcium channels
and transporters was modelled and stochastically simulated using P systems.

In this paper, we propose to move from the approach of modeling single mem-
brane protein to a more global approach of modeling membrane proteins popula-
tions (MP populations), in order to account for the functioning synergy of many
membrane proteins (and its effects on the cell life processes). We hope that this
modeling will contribute to a global scale analysis of MP populations.

To this aim, we present an extension of the standard notion of membrane
in P systems — this extension relies on the use of a 2-dimensional parametric
spherical surface instead of a 1-dimensional border. This new approach enables
one to consider the spatial distribution of MP populations over the membrane
surface. In particular, one can describe such populations using finite sets of cir-
cular words which can be naturally associated to the chosen parametrization.
Then, the operations over circular words such as insertion and deletion, commu-
tation and shift, formalize various movements of proteins upon the membrane
surface, yielding in this way a global dynamic view of the MP populations. In
particular, we focus our attention on populations of transporters, by formaliz-
ing some biological properties characterizing various types of transport, such as
the selectivity, the direction of crossing, and the flux rates. We envisage that
this approach may lead to a number of possible applications such as: global ion
fluxes (|4]) through the plasma membrane, the dynamical representation of pro-
tein movements and clustering, the description of interaction effects between the
membrane and the proteins residing in it that may affect the curvature.

The paper is structured as follows. In Section 2 we review the structure of
biological membranes, the different types of membrane proteins and their func-
tioning, as well as the classical conceptualization of the membrane architecture
(the Singer-Nicholson fluid mosaic model), related to the movements of proteins
upon the membrane. In Section 3 we give the definition of the parametric spher-
ical surface and of the set of circular words representing the MP population.
In Section 4 we define the operations over circular words that characterize the
movements of membrane proteins upon the surface. Then, in Section 5, we reduce
the level of abstraction in the description of MP populations, by giving a more
detailed representation of transport proteins. Finally, in Section 6 we present in
some detail some possible applications of the extended membrane framework for
the analysis of both biological and computationally oriented topics.

2 Biological Membranes and Membrane Proteins

In this section we revise some notions concerning cellular membranes, such as its
lipid and protein constituents, and the standard conceptualizations of the mem-
brane structure and fluidity. Then, we describe three major classes of membrane
proteins that are involved in the transport of solutes across the membrane. For
more details and examples we refer the reader to standard books in Molecular
Cell Biology such as [23,3].

20 D. Besozzi and G. Rozenberg

Cell’s shape. For some types of cells (e.g. neural or vegetal cells), the shape
is a nonvariable characteristic. Other cells (e.g. migrating blood cells) are subject
to shape variation which, besides possibly depending also on the cytoskeleton,
is mostly due to environmental actions of mechanistic type (the pressure ex-
erted by neighboring cells, or by the surrounding biological liquid) and to their
functionality in the tissue or organism. Whenever the cells that do not possess
a specific structured shape are artificially isolated from the tissue they belong
to, they gradually resume a spherical form, according to physical laws of sur-
face tension. Similarly, when spherical shaped cells are put close to each other,
they assume a polyhedral shape with the number of faces corresponding to the
number of cells in mutual contact.

Constituents of biological membranes. The primary constituents of cel-
lular membranes (whether they are plasma or internal membranes) are amphi-
pathic molecules (i.e., molecules with one hydrophobic and one hydrophilic part)
called phospholipids. There are several classes of phospholipids, such as phospho-
glycerides, sphyngolipids, cholesterol, steroids, glycolipids, ...— they differ with
respect to the molecular composition of the hydro-phobic/philic parts. Due to
the amphipatic property of phospholipids, biological membranes are composed
of sheetlike bilayers (with two external hydrophilic polar parts and and internal
hydrophobic apolar part) that spontaneously form closed structures that sep-
arate two aqueous compartments. Globular proteins are also associated to the
bilayer in different ways. Peripheral proteins are (more or less weakly) bound to
the hydrophilic part of phospholipids, or dipped into the bilayer — but not inter-
acting with its hydrophobic core — on both sides of the membrane, facing either
the cytoplasm or the environment ([13]). Integral (or transmembrane) proteins
have one or more domains (« helices or multiple 3 strands)® that span the whole
depth of the bilayer. Integral proteins have a very specific orientation (i.e., an
asymmetric structure) with respect to the two sides of the membrane, conferring
different properties on the two faces; this fact is also reflected by the different
molecular compositions in the two compartments separated by the membrane.
The orientation of an integral protein is established during its biosynthesis and
its insertion into the endoplasmic reticulum membrane, by means of complex
structures called translocons (see, e.g., [23]).

The fluid mosaic model. The fluidity and dynamic mobility of a cellular
membrane are determined by its specific lipid and protein composition, which
can differ from one layer to another in a membrane, from membrane to membrane
(with different membranes surrounding different organelles in a cell), and from
cell to cell. Due to thermal motions, phospholipids and glycolipids can freely
rotate around their longitudinal axis, and also diffuse laterally within the layer
where they reside. Only occasionally, they can flip-flop from one layer to the other
one (a motion that needs to be catalyzed by proteins called flippases). Many
integral proteins are also freely mobile; immobile proteins are those that are

! We emphasize that here we are not concerned with a molecular-scale description of
the aminoacidic composition or the conformations of proteins, but only with their
functioning mechanisms and activation conditions (see also Sections 5 and 6.1).

Formalizing Spherical Membrane Structures and MP Populations 21

permanently attached to the cytoskeletal elements inside the cytoplasm. The first
conceptualization of the membrane structure, known as the fluid mosaic model,
was proposed in the seventies by Singer and Nicholson ([35,34]). According to
this model, the cellular membrane is a 2-dimensional “sea of lipids” where lipid
molecules, as well as (monomeric and low abundant) integral proteins, freely
float unencumbered. Criticisms of this model, and new insights for a (plausibly
more) realistic paradigm of membrane architecture and mobility, will be further
discussed in Section 6.4.

Transport proteins. The plasma membrane delimits the cell, and acts as a
selective permeable barrier between the cytoplasm and the exoplasm, allowing
a bidirectional passage of molecules. Its functions include the inflow of nutrients
and the outflow of waste solutes, the maintenance of proper ionic composition
and pH, the transduction of external signals, the exchange of metabolites be-
tween adjacent cells in a tissue, the interactions with the extracellular matrix.
Most of these functions are carried out by specific transmembrane proteins. Here,
we focus on the activity of the integral proteins involved in the selective transport
of ions and solutes — refereeing to them as the transport proteins. In different cell
types, the transport proteins residing within the plasma membrane, or within
various organelle membranes, can vary considerably, both in types and concen-
trations, thus allowing only certain ions or molecules to cross the membrane.

Transport proteins create the (pH, ions concentration, potential) gradients
across the membrane by moving ions and solutes inwards and outwards. At the
same time, these gradients are the primary “forms of energy” which can then
be used by other transport proteins for the accumulation or the exclusion of
other solutes. In this paper, we will consider three major classes of transport
proteins: ATP-powered pumps, cotransporters and channels. This classification
will be used to distinguish between different transport mechanisms. However
some transport proteins may utilize more than one transport mechanism - such
cases will not be considered in this paper. Also, we will not explicitly discuss the
functioning of other classes of transport proteins, such as, e.g., ABC superfamily
proteins ([16]) and porin families.

All transport proteins belonging to the three classes listed above exhibit a
high specificity for the transported substances, while they differ with respect to
the rate of transport, which is due to different mechanisms of action. Specificity
or selectivity means that each transport protein type is able to bind and move
a single species, or a single group of closely related molecules with which it has
a high (chemical) affinity ([19]).

ATP-powered pumps, or simply pumps, use the energy released by ATP hy-
drolysis to move ions or small molecules against (or “uphill”) an electrochemical
gradient (the process is also known as active transport). The coupling between
the uphill transport and the hydrolysis of ATP is then energetically favorable.
Anyway, the overall mechanism of action consistently slows down the transport
rate of pumps to only about 1-10% molecules per second.

Cotransporters simultaneously bind only one or few solutes — then a change
in the protein conformation allows the transport of bound molecules across the

22 D. Besozzi and G. Rozenberg

membrane. Due to the necessary conformational change, cotransporters move
about 102-10* molecules per second. Among cotransporters, uniporters move one
molecule at a time down its concentration gradient (this process is also known
as facilitated transport), while symporters and antiporters couple the passage
of one type of molecule against its concentration gradient with the passage of a
different type of molecule down its concentration gradient.

In contrast to the other two classes, channels simultaneously transport mul-
tiple water molecules or specific types of ions, in a single file, down their con-
centration or electric potential gradients at a very rapid rate (about 107-108
molecules per second). Some channels are usually open within the membrane,
e.g. the potassium-specific channel, others are usually closed, opening only in
response to specific signals.

All symporters and some antiporters move ions together with small molecules,
whereas ion pumps and ion channels transport only ions. The rate of ions move-
ment across a membrane is influenced by the external and internal concentra-
tions, as well as by the electric potential existing across the membrane. The ionic
gradients of the principal cellular ions (Na®, KT, Ca?") are generated and main-
tained by ATP-powered pumps. In animal cells these gradients, together with
the selective transport of ions through channels, determine an electrochemical
potential of around -70mV — with the cytosolic face of the plasma membrane
always negative with respect to the exoplasmic face. We refer to Section 6.1 for
a description and a formalization of concentration and potential gradients.

3 The Parametric Spherical Membrane and Membrane
Proteins Populations

The concept of membrane in P systems (|28]) consists of a (1-dimensional) border
— implicitly assumed to correspond to a closed surface in a 3-dimensional space
— which identifies and separates two regions. Objects occurring in one region can
cross the membrane, by the application of appropriate rules, and thus be placed
in the outer region or inside an inner region, if any. Membranes can also be used
to represent the lipid bilayer, where objects can reside (|9]), or where specific
operations can occur ([27]). Labels attached to the membrane can have various
meanings: numeric identifiers, electric charges ([29]), multisets of objects, etc.
In the last case, the objects placed on the membrane are usually interpreted as
proteins associated with the membrane itself, allowing several operations acting
directly upon the membrane ([12]).

However, when attempting to describe MP populations, one has to face some
limitations of the above concept of membrane. For instance, there is no obvious
or easy method to represent a spatial distribution of objects within/upon the
membrane. Indeed, one could associate with the membrane a string instead of
a multiset; in this way, it would be possible to characterize, for each symbol in
the string, which are its left and right adjacent symbols. Anyway, the fact that
the membrane is represented by a 1-dimensional border only allows for a planar
representation of a cellular membrane (like cutting a section in the cell surface).

Formalizing Spherical Membrane Structures and MP Populations 23

But the implicit concept of surface would be lost: even by associating a string to
the membrane, it still would not be possible to define a notion of neighborhood
along every directions on the membrane surface.

For a formal description of a MP population — where the spatial distribution
of proteins is important — it is thus more appropriate to consider a 2-dimensional
surface which is topologically equivalent (homeomorphic) to the sphere S? C R3,
see [21]. As a first approximation we choose to use the shape of the sphere, though
cells can have very different forms, ranging from the biconcave round shape of
red blood cells to the highly branched structure of multipolar neurons.

Let X be the spherical surface, and consider the canonical discrete parameter-
ization of X' given by two ordered sets, P = (p1,...,pr) and M = (mq,...,my),
whose elements are called parallels and meridians, respectively. This param-
eterization gives rise to the set P of rs intersection points of parallels with
meridians, plus two additional, north and south, “polar points” py,ps, which
correspond to the sites where all meridians intersect. We distinguish one merid-
ian, viz., m1; € M, as the “Greenwich” meridian, and starting from m; we move
counterclockwise on the sphere; similarly, we distinguish one parallel, viz., p1,
as the “northern” parallel which is adjacent (closest to) the north polar point.
The meridian m; will be used to identify the first symbol in the circular strings
corresponding to the parallels, as explained below.

We assume that the canonical parametrization of X' is regular, meaning that,

for any pair of adjacent meridians m;, m;11, ¢ = 1,..., s, their mutual distance
— taken along any common fixed parallel — is the same (equal to daq), and,
similarly, for any pair of adjacent parallels p;,pj+1, j = 1,...,7, their mutual

distance is the same (equal to dp). This is illustrated in Fig. 1. In this way the
values of r, s determine the granularity of the parametrization — obviously, for
r,s — 00, we obtain a continuous surface. In the following, we will also refer to
this spherical parametric surface as the (P, M)-membrane.

The parametrization of the spherical surface allows us to formalize MP pop-
ulations residing in membranes. The resulting notion of a configuration of MP
population over X has to satisfy two assumptions:

1. placement points: the intersection points of meridians with parallels are the
only locations where any membrane protein can reside upon X;

2. self-avoidance sharing: any intersection point can be occupied by at most
one membrane protein.

A way to achieve such a formalization is to use circular words.

First of all we formalize the spherical grid of intersection points. To this aim
we consider a finite and ordered set of circular words 71, ..., each of length
s, and two words g, w41 of length 1. Each m;, 1 < i < r, corresponds to the
intersection points of meridians with the parallel p;, while mg, w41 correspond
to polar points py and pg, respectively (in fact 7o = py and 7,41 = pg).

Each circular word 7;, i = 1,...,r, will be written in the standard form

..7'['(,S

_ 1.2
T = T TG - i

where 77{ € P.

24 D. Besozzi and G. Rozenberg

Sl g =
Sl T, e

Py
"ﬁi{i‘-{%"‘

Fig. 1. The parametric regular spherical membrane

The ordered set of circular words (mg, 71, . . ., T, Try1), called the scaffold, rep-
resents the spherical grid of intersection points and hence formalizes the structure
of the parametric spherical membrane.

Since each 7;, 1 <4 < r, is a circular word, the counting while moving (along
a parallel) to the right or to the left is done modulo s. Thus, s +1 = 1 and
1 —1 = s and so, moving from 73 to the right leads to 7}, and moving from 7}
to the left leads to 77. This yields the following definition of neighborhood.

Definition 1. Let o = (mg, m1,. .., 7, Tr4+1) be the scaffold.

(1) Let 2<i¢<r—1and consider 71'{, 1 < j < s. The direct neighborhood of 77?
(in o) is the set Na(ﬂ'f) = {71'3:11’ 7_‘_3.71771_31-11771_3—1’ 7sz'+1’ 7713'4:11’ 7sz'+1’ 773:11 :
2) Let i = 1 and consider 7], 1 < j < s. The direct neighborhood of w (in o
1 _ _ 1
is the set N, (m]) = {pn, 77{_1,7r{+1,7r%_1, m, mit. ‘
3) Let ¢ = r and consider 72, 1 < j < s. The direct neighborhood of wl (in o
ST . - . A T
is the set Ny (md) = {wl "1,)|, wltl nd=1 i+l pg}.
(4) The direct neighborhood of the north polar point px (in o) is the set NV, (pn)

={ri,..., 7}
(5) The direct neighborhood of the south polar point pg (in o) is the set Ny (ps)
={rk, ..., 75}

In cases (1), (2), and (3) we refer to 7~ as the left neighbor (in o) of !, and
to /™! as the right neighbor (in o) of ..

Now we move to formalize the placement of proteins in the intersection points
of the spherical grid (scaffold).

Let V.= {A1,...,A,} be the alphabet of n different types of membrane
proteins, Vi, = V U {x} where * is a special symbol, x ¢ V, and let I = {1,...,r}
and J = {1,..., s}. We will consider an ordered set of circular words w1, . .., w, —

Formalizing Spherical Membrane Structures and MP Populations 25

each of length s, and two words wq, w,41 of length 1. Each w;, ¢ € I, corresponds
to a placement of proteins along the parallel p;, while wg, w,+1 correspond to a
placement of proteins on the polar points py and pg, respectively.

Each circular word w;, i € I, will be written in the standard form

142
w; = A; A7 A7

where Af € Vi,j € J. The interpretation for (the intuition behind) the occur-
rences of symbols A7 in w; is as follows:

1. the superscript j identifies the intersection point of p; with my,

2. Az = Ag, for some 1 < k < n, indicates that a protein of type Ay is located
at the intersection of p; with my,

3. A{ = x indicates that no protein is located at the intersection of p; with m;.

We will also use the notation wy = By and w,4+1 = B,4+1, where By, B,4+1 € Vi.

We are now ready to define a central notion of a configuration.

Definition 2. Let X be a (P, M)-membrane. A configuration v of X is a se-
quence v = (wp, w1, ..., Wy, wyr1) of circular words over V., where each of
w1, ..., w, is of length s and wy, w,11 are of length 1.

The intuition behind a configuration -y is as follows: the sequence (wp, w1, ...,
wy, wy1) describes the placement of proteins on all the intersection points of the
scaffold (o, 71, ..., T, mr41), where * indicates that there is no protein placed at
a given intersection point. Note that this definition of a configuration naturally
satisfies the requirements of placement points and self-avoidance sharing (stated
in the initial part of this section).

4 Operations

In this section we define operations over circular words which are used to simulate
various movements of membrane proteins upon the membrane surface. In what
follows, let v = (wg, w1, ..., w,,w,41) be a configuration of X.

Definition 3. A commutation (in v) is a function com, : I x J — V;? such
that com,(4,7) is defined if A AT o % and when defined com,(i,5) =
(ALY ... (Ag), where (A7) = AIt' (ATT'Y = A7 and (Al) = Al for all
held—{jj+1}

Thus com. (4, j) exchanges the positions of two adjacent proteins (AZ and A{ Y
residing on the parallel p;.

Definition 4. A left shift (in 7) is a function Ishy : I x J — V7 such that
Ish+(i,) is defined if A7 # % and A7~' = %, and when defined Ish,(i,7) =
(ALY .- (Ag), where (AJ7')Y = AJ (A7) = « and (A}) = Al for all h €

26 D. Besozzi and G. Rozenberg

Thus Ish (i, j) moves protein A{ to its free left neighbor position.

Definition 5. A right shift (in v) is a function rshy : I x J — V7 such that
rshy (i,) is defined if A] # * and Ag“ = *, and when defined rsh,(i,j) =
(ALY .- (A3), where (A1) = %, (A7*1Y = A7 and (A") = AP for all h €

Analogously to the left shift, rsh., (4, j) moves protein A{ to its free right neighbor
position.

Definition 6. A downwards exchange (in 7) is a function dch, : (IU{0})xJ —
(V2 x V2)U (VP x Vi) U (Vi x V#) such that dch (i, j) is defined if A} # «, and
when defined then:

1. for 1 < @ < r, dehy(i,7) = ((Al)’ - (A%), (A3+1)/"4‘(Af+1)/)a where for
some h € {j —1,7,j + 1}, (A) = A?—&-l? (Ail-&-l)/ = Ag, (A§+1) = Az+1 or
all t # h, and (Al) = Al for all t # j; A

2. dehy(r,j) = (AL -~ (42, (Brar)), where (ALY = By, and (Byy) =
A{;

3. dehy(0,§) = ((Bo)', (A1) -+ (A])'), where (Bo)' = Af, and (4]) = Bo.

Thus dch, (i, j) for 1 < i < r exchanges A] with one of A7, A7, ATt For
i =1, dchy(r, j) exchanges AJ with By4q. For i = 0, dch(0,j) exchanges By
with Af.

Definition 7. An upwards exchange (in) is a function uch : (I U {r +1}) x
J— (V2 xV2)U(VEx Vo) U (Vi x V2). Analogous to the downwards exchange,
uch. (i, j) is defined if A7 # %, and when defined then:

1. for 1 < i < r, uchy(i,j) = ((AD) - (A3), (Al_1) -+~ (A5 1)), where for
some h € {j = 1,5, + 1}, (A]) = AL}, (Al,) = A], (Al_}) = AL, for
all t # h, and (A!)" = Al for all ¢ # j;
uchy(1,) = (A1) -+ (A7), (Bo), where (A])’ = Bo, and (B) = Al;
5. uch(r +1,) = (Bys1), (ALY -~ (A2)), where (Bys1)’ = Al and (AJ)' =

BT+1.

S

Thus, analogously to downwards exchange, uch, (i, j), for 1 < < r, exchanges
A7 with one of AJ”!, A7 | ATt For i =1, uch,(1,7) exchanges AJ with By.
For i =r+1, dchy(r +1,j) exchanges Br+1 Wlth Al

In Figure 2 we graphically represent the set of direct neighbors of protein A{
placed on p;, for some 1 < ¢ < 7. The direct neighbors are the only intersection
points to which protein A7 can move to by the application of one commutation,
one shift or one exchange operation.

Besides the operations that describe the possible movements of proteins within
a (P, M)-membrane, we also define two operations which allow one to add or
remove proteins from X.

Formalizing Spherical Membrane Structures and MP Populations 27

Jj—1 J Jj+1
Di1 Tic1g Ti-1g o Mi—1
j—1 J Jj+1
D oo A oM
Jj—1 J Jj+1
T T T
Pit+1 i+1 0 z+1o o) i+1
mj;—1 m; mj41

Fig. 2. The set of direct neighbors (circle intersection points) of protein A’ (square
intersection point)

Definition 8. A deletion (in) is a function del, : (IU{0,r+1})xJ — V;? such
that del, (i, j) is defined if A} # %, and when defined del,, (i, j) = (ALY - (A7),
where (A7)" = * and (Al) = Al for all h € J — {j}.

Thus del, (i, j) removes the protein A{ from configuration ~.

Definition 9. An insertion (in 7) is a function ins, : (IU{0,r+1}) x J xV —
V? such that ins, (i, 4, A) is defined if A} = *, and when defined ins, (i, j, A) =
(ALY -+ (A2), where (A}) = A and (A}) = Al for all h € J — {j}.

Thus ins. (i, j, A) inserts protein A into the vacant position A’ in configuration
5.

Note that the application of commutation, shift and exchange operations pro-
duces a different placement over X' of the proteins already residing in it. On
the other hand, insertion and deletion operations cause the current MP popula-
tion (namely, the number and possibly the types of proteins over the surface) to
change. Indeed, the molecular composition of a cellular membrane is not fixed
during all cell’s life, but it is a dynamic constituent which changes according to
proteins lifetime and vesicular trafficking.

For a configuration vy, we will use OP, to denote the set of operations that
we have defined above, viz., commutation, left and right shift, downwards and
upwards exchange, insertion and deletion.

Two assumptions can be done concerning the MP population initially present
upon the parametric spherical surface. On the one hand, we can assume that the
proteins are randomly placed over the membrane, provided the obtained config-
uration satisfies the requirements of placement point and self-avoidance sharing.
On the other hand, we can require that the placement of proteins correspond to

28 D. Besozzi and G. Rozenberg

some biological restriction, e.g., the clustering of specific types of proteins, the
presence of lipid rafts, the description of membrane patchiness (see Section 6 for
a discussion of these topics).

In both cases, starting from an initial configuration v over X, it is possible to
describe the evolution of the MP population. For instance, for the analysis of the
real processes discussed in Section 6 — such as the mechanisms generating the
curvature of the membrane, the movement of proteins according to membrane
“fence” models, etc. — specific constants can also be associated to each operation
in OP,. This will allow, e.g., to follow the dynamics of the MP population in a
stochastic manner.

To this aim, in Section 5 we will associate the notion of functionality to the
transmembrane proteins acting as transporters. Then, in Section 6.1 we will
describe how to use this feature for the global analysis of the ion flows across a
membrane.

5 A Formal Description of Transport Proteins

In this section we formalize the functionality of transmembrane proteins involved
in the passage of solutes across the cellular membrane.

Let X be a (P, M)-membrane as defined in Section 3 and O an alphabet of
objects. Let us denote by P,,; and P;, the multisets over O occurring, respec-
tively, in the region outside X' (the external region) and in the region delimited
by X' (the internal region).

Definition 10. For each A € V, the functionality of A, denoted by f(A), is a
subset of the cartesian product O x {1, |,]} x NT such that, for all (x,y,2) €
f(A), if (x,y',2") € f(A) then y =y and 2’ = 2.

The intuition behind this definition is as follows: (z,y,n) € f(A) means that A is
selective for object x € O and simultaneously transports n copies of z according
to direction y: for y = T, = is transported to the external region, for y = |, x is
transported to the internal region, and for y = [, x may be transported to either
external or to internal regions.

Ezample 1. Let V = {A,B,C} and O = {a,b,c,d,e}. Let the functionality of
proteins A, B and C be defined as follows:

f(A) = (a,1,1)
f(B) ={(b,1,3),(c, 1,2)}
F(C)={(,1,1),(d,],1), (e, T, 1)}

This means that:

— any protein of type A is selective for object a € O only, it moves exactly 1
copy of a either from the external to the internal region, or the other way
around;

Formalizing Spherical Membrane Structures and MP Populations 29

— any protein of type B is selective for objects b, ¢ € O, it simultaneously moves
exactly 3 copies of b from the external to the internal region and exactly 2
copies of ¢ from the internal to the external region;

— any protein of type C is selective for objects b,d,e € O, it simultaneously
moves exactly 1 copy of b and 1 copy of d from the external to the internal
region, and exactly 1 copy of e from the internal to the external region.

Remark 1. Consider the abstract protein types described in Example 1, and let
a, b, c,d, e correspond to glucose, Na™, KT, HCO;7 Cl1—, respectively. Then, pro-
tein A could correspond to GLUT1 uniporter in mammalian cells, which trans-
ports one molecule of glucose either from the external to the internal region, or
the other way around, according to the glucose concentration gradient across
the membrane (it always performs a “downhill” transport). Protein B could cor-
respond to Na©™-KT pump, which exchanges three extracellular Na™ ions with
two intracellular K™ ions (by consuming one ATP molecule). Protein C' could
correspond to Nat-H C’O; /Cl™ antiporter, which exploits the downhill concen-
tration gradient of Na* to simultaneously move one Na* and one HCO3 from
the external to the internal region, and one Cl~ in the opposite direction, against
its concentration gradient. See, e.g., [23] for more details about the mentioned
transport proteins.

Remark 2. If A € V is a protein type corresponding to a channel, then the
meaning of the value n in the definition of the functionality f(A) has to be
relaxed. Indeed, protein channels do not transport a fixed number of molecules
— that is, they are not characterized by a very specific stoichiometry. To the
contrary, many molecules can simultaneously cross a channel whenever it is open:
a current, or flow, can be experimentally determined for the functioning of (a
single occurrence of) each channel type ([36]). We explain here how to associate
an appropriate value n to protein channel types. Let I be the known current of
channel A, let Z be the electric charge of each transported molecule, and ¢ =
1.6021773- 10712 C the value of the elementary charge (see, e.g., [7]). Then, the
average number of molecules that are simultaneously transported by a channel
A in one second is given by the formula n = I/(Zq). As an example, we derive
the average number of Ca?* ions which are transported in one second by the
ryanodin receptor channel (RyR) ([18]). Since Iryr = 0.3 pA and Zgg2+ = 2,
then ngyr ~ 9.4 - 105 ions/sec (see also [26]).

We emphasize that up to now we have only considered the functioning of trans-
port proteins. In Section 6.1 we propose a formal description of some biological
conditions, e.g. energy consumption, concentration and potential gradients, that
trigger the activation of such proteins.

We are ready now to formulate a method of object transport based on MP pop-
ulations. A membrane population transport scheme, abbreviated MPT scheme,
is a four tuple S = (V, X, Fy/, O) such that:

— V is an alphabet of protein types;
— XY is a (P, M)-membrane over V;

30 D. Besozzi and G. Rozenberg

— Fy ={f(A) | A € V} is the set of functionalities for protein types in V;
— O is an alphabet of objects.

A MPT scheme S defines a scheme of transporting molecules (objects) through
a (P, M)-membrane. It provides the specification (Fy) of how molecules (ob-
jects from O) are transported by various protein types (from V') through any
distribution of proteins within the given (P, M)-membrane ¥. A distribution
of proteins within X is given by a configuration of Y. For a given configuration
~ one can determine both the transport of molecules through X' in this config-
uration vy, as well as the dynamic change of v through the operations in OP,
defined in Section 4.

The behavior of S, hence the transport of objects through X together with
the dynamic changes of Y| can be as usual formalized through transitions be-
tween the instantaneous descriptions of S. Such a formalization could proceed
as follows.

An instantaneous description of S is a triplet C = (v, Py, Pout) where 7y is a
configuration of X and Pj,, P,,; are multisets over O. The underlying intuition
is that ~ represents the distribution of proteins within X', and P;,, P,,: represent
multisets of objects present in the inside and outside regions of X' at a moment
of time captured (formalized) by C.

Then the transition from C to C' = (v, P}

wm’ P/
can take place if:

out

) in S, denoted C g C’,

1. 4" is obtained from v by the parallel application of operations from OP;,
with the assumption that each coordinate A{ € V. in X is the subject of at
most one operation in OP;

2. P/ . P! . are obtained by the parallel transport of objects from P;, and P,
according to the functionality of proteins in ~.

The evolution of S beginning with C is a sequence Cy,C4,...,Cp, n > 1,
of instantaneous descriptions such that Cy = C and, for each 0 < ¢ < n —1,
Cits Cit1.

Then, by fixing the initial multisets of objects in the inside and the outside
regions of X', one obtains a membrane population transport system.

Thus a membrane population transport system, abbreviated MTP system, is
a triplet T = (5, Qin, Qout) such that S is a MTP scheme and Q;y,, Qout are
multisets over the alphabet of objects of S, called the internal and external
multisets of T', respectively. An evolution of T' is an evolution of S beginning
with an instantaneous description C' = (v, Pi,,, Pout) such that P, = @Q;, and
Poyi = Qout-

6 Discussion

In this section we discuss some possible applications of the parametric spherical
membrane and MP populations. Biological and formal aspects of possible re-
search lines are explained; detailed description and specific analysis concerning
the presented topics will be further presented in forthcoming papers.

Formalizing Spherical Membrane Structures and MP Populations 31

We begin by discussing biologically oriented topics such as global ions flows
at the whole plasma membrane, new conceptualizations of the membrane archi-
tecture, the presence of membrane microdomains and protein clusters, and some
membrane curvature generating mechanisms.

Then, we propose some applications of our framework for the analysis of
computation oriented topics.

6.1 Ion Flows

In Section 5 we have defined the functionality f(A) of a protein type A € V
which determines the selective transport of objects across the membrane, their
multiplicity and crossing direction. In order to achieve a complete characteriza-
tion of protein transport (e.g., for the purpose of analysis of the ion flows across
a membrane) it is also important to know which proteins — in any evolution step
— can be actually functioning, according to the current environmental condi-
tions. To this aim, we formalize the notions related to some biological conditions
that can trigger the activation of a transport protein. By activation we mean
the (conformation) change of an individual transport protein into its functional
state. The biological conditions that we consider here are the concentration gra-
dient and potential gradient across the membrane, as well as the availability of
energy molecules. Unless otherwise specified, we assume that the distribution of
ions — inside and outside the membrane — is homogeneous. Moreover, we will
only consider the contribution to membrane gradients given by the transported
ions and molecules, viz., the objects from the alphabet O.

We begin by the evaluation of the concentration and potential gradients across
a membrane. Let C' = (v, P;y,, Poyt) be an instantaneous description of S. Let
Pin(a), Poyt(a) denote the occurrences of object a € O in the multisets P, and
P,.:, respectively?.

Definition 11. The concentration gradient across a membrane — with respect
to object a € O — is defined by AConc, = Pyui(a) — Pip(a).

The activation of a transport protein A can be influenced by the concentration
gradients corresponding to the objects that are selectively transported by A.
Hence, given the functionality f(A) of protein A, for ion flux analysis one should
account for the set AConcyay = {AConc, | (x,y,n) € f(A)} € N*, where a is
the number of distinct symbols « € O such that (z,y,n) € f(A).

To define the potential (or voltage) gradient across a membrane, we first need
to associate a charge to each object a € ©. We use the notation a*¢e to say that
the charged object a has k, units of (positive or negative) charge ¢, for some
ko € NT and for ¢, € {+,—}.

Example 2. Let a,b € O correspond to ions Ca?t and Cl~, respectively. Then,
Cqo=+,ksg=2and ¢, = —, kp = 1.

% Discrete multiplicities of ions can be derived from real (molar) concentration values
by considering also the volume values of the involved regions.

32 D. Besozzi and G. Rozenberg

Definition 12. The voltage gradient across a membrane is defined by AVolt =
Y aco kaca - AConc,.

Thus, the voltage gradient is evaluated by considering the difference between
the sum of all external charges and the sum of all internal charges. In fact,
AVolt =3 . cokaca - AConc, =3, co kaCa - (Pout(a) — Pin(a)) = > co(kata
Pour(a)) = 2aco(Kata - Pin(a)).

The factor ¢, in the definition of AV olt, is used to comply with the conven-
tion that, for positively charged ions, the membrane potential is the difference
between the potential on the external face and the potential on the internal face,
while for negatively charged ions it is the difference between the potential on the
internal face and the potential on the external face of the membrane.

We are ready now to introduce the formal notion of triggering conditions that
allow the activation of transport proteins.

Definition 13. For each A € V|, the triggering condition of A, denoted by
tr(A), is a 3-tuple 7 = (n1,n2,n3) € (N* U {7}) x (NU{f}) x N.

The intuition behind this definition is as follows:

— ng is called the concentration gradient triggering condition: it represents the
threshold values of the concentration gradients AConcy(4) below (or above)
which protein A is active. If ny = {, then the concentration gradient does
not influence the activation of A;

— no is called the potential gradient triggering condition: it represents the
threshold value of the potential gradient AV olt below (or above) which pro-
tein A is active. If no = f, then the potential gradient does not influence the
activation of A;

— ng is called the energy consumption triggering condition: it represents the
number of energy units (which correspond to ATP molecules in the cell) that
are needed for protein A to be active. If ng = 0, then the protein does not
use the energy derived from ATP hydrolysis.

In some cases, the numeric threshold values of concentration or voltage gra-
dients could be replaced by intervals, which determine the range within which
the protein is, or isn’t, active.

The maximum transport rate of the transport proteins population, which is
achieved when each protein is active and functioning at its maximal rate, can be
then derived according to (1) the number of transport proteins residing in the
membrane at any evolution time, and (2) the concentration or voltage gradients
across the membrane, or the number of available energy units.

Ezxample 3. The sodium-calcium exchanger E in excitable cells can work either
in a direct or in a reverse form, according to the current conditions. In the
direct form, its functionality is f4(F) = {(Ca®*,1,1),(Na™, |,3)} and its trig-
gering condition depends on the intracellular regulatory calcium concentration,
which has to be higher than 0.1 pM. In the reverse form, its functionality is

Formalizing Spherical Membrane Structures and MP Populations 33

fr(E) ={(Ca**,],1),(Nat,1,3)}, and its triggering condition depends on the
intracellular sodium concentration, which has to be higher than 100mM, and on
the membrane potential, which has to be around -40mV ([32,14]).

Remark 3. In some physiological conditions of living cells, it might be more re-
alistic to consider non-homogeneous distribution of ions across and along the
membrane. In this case, the previous definitions of membrane gradients have to
be modified, in order to describe the local values of these parameters. Accord-
ingly, the positions of each transport protein over the membrane surface and
the knowledge of its local surrounding conditions, determine the activation of
the protein at each evolution time. However, an important role is also played by
the effective distance between the membrane and the ions on its internal and
external sides. A possible formalization of these situations, deserving further in-
vestigation, was proposed in [2] by means of “virtual membranes”; also, fuzzy
control methods for the functioning of transport proteins were sketched in [1].

6.2 Membrane Microdomains and Protein Clustering

Microdomains are small areas in cellular membranes where either the lipid and
protein composition, or the structure and curvature, are different with respect
to the rest of the membrane. At microdomains, complex phase behaviors of the
membrane can be seen, such as transient separations between the fluid (liquid-
crystalline) normal phase of the membrane, and a liquid-ordered phase. This
is the case for lipid rafts ([3,10]), small and dynamic microdomains where sph-
ingolipids and cholesterol concentrate. Due to their molecular structure, these
lipids transiently get tightly packed and ordered by attractive forces (not nor-
mally acting on other types of lipids). Since the bilayer is thicker in the rafts,
some transmembrane proteins (having long enough spanning segments) can bet-
ter accommodate there. In this way, lipid rafts can help to organize these proteins
by clustering them together, thus allowing functions such as signaling transduc-
tion, secretory and endocytic sorting and trafficking.

Besides the presence of rafts, protein clustering is an important mechanism
occurring in cells, by which several synergic phenomena can take place. For in-
stance, the “calcium-induced-calcium-release” process in muscle cells happens
because of cooperation between clusters of RyR channels (at the sarcoplasmic
reticulum membrane) and clusters of dihydropyridine receptors (at the tranverse
tubules in the plasma membrane) ([33]). Also the bacterial chemotactic response
to attractants or repellents is mediated by clustered proteins, involved in a com-
plex signal transduction pathway between protein receptors and the flagellar
motors ([5,20]).

Membrane microdomains of a different type are represented by caveolae, which
are small and specialized invaginations of the plasma membrane, implicated in
endocytosis, signal transduction and lipid trafficking ([10]). Caveolae are dy-
namic structures whose formation seems to be ruled by caveolin, a protein that
is also assumed to play a role in vesicle formation. Experimental evidence sug-
gest that, similarly to lipid rafts, a variety of cell-surface signaling pathways are
concentrated in caveolae.

34 D. Besozzi and G. Rozenberg

The presence of membrane microdomains could be described in the frame-
work of the parametric spherical membranes by defining a set D of (free or
occupied) adjacent intersection points, spanning a portion of some parallels and
some meridians. In the local area given by D, the operations defining the move-
ment of proteins could then be applied in a different way: for instance, reduced
application rates can be used to characterize lipid rafts, or even no application
at all can be considered to represent the trapping of integral proteins in specific
positions. On the other hand, the formation of a microdomain, such as rafts or
caveolae, should result as an emergent property of the movements and interac-
tions of membrane proteins, possibly by considering the local lipidic composition
of the membrane as well.

The occurrence of proteins of the same — or chemically affine — type in a set D,
due to either random or preferential movements and interactions of the proteins,
can describe the presence or the formation of protein clusters. In this case,
the effective functioning of the clustered proteins can be different with respect
to their functioning in isolated positions, due to their synergic and feedback
interactions.

6.3 Membrane Curvature

The cell shape is the result of many physical forces operating on the membrane.
In some cases, the shape is stabilized and permanent, for example in microvilli or
in the dendritic tree; in other cases, the conformation of cellular membranes can
change considerably, for instance during processes such as movement, division,
vesicular trafficking, etc. Membrane curvature is generated by a complex inter-
play between lipids, membrane proteins, the tensional forces that are applied
to the membrane surface, and cell’s sensors that feed back to the production of
specific curvature-related molecules.

There are several curvature generating mechanisms, possibly working in syn-
ergy at the cell membranes. Besides the lipid composition and the role played by
the cytoskeleton elements, many remodeling actions are induced by membrane
proteins. This is the case in the formation of highly curved vesicles, where the
membrane curvature is the effect of polymerized peripheral proteins, called coat
proteins (e.g., clathrin), sometimes linked to membranes through other adaptor
proteins. Coat proteins form a sort of exoskeleton around the vesicle, and they
induce and regulate the membrane traffic for intracellular transport of molecules.
Experimental studies of clathrin-coated invaginations revealed that actually sev-
eral different proteins work together to promote membrane bending and vesicle
formation ([25]).

Other scaffolding mechanisms ([38]) due to membrane proteins are the results
of banana-shaped protein domains (e.g., BAR domain) found in a wide variety
of proteins (see, e.g., [31]). These domains bind to membrane lipids through
their intrinsic concave surface, thus remodeling and stabilizing the membrane
curvature. Another way to increase the positive membrane curvature is by the
insertion of amphipathic protein helices into the bilayer.

Formalizing Spherical Membrane Structures and MP Populations 35

The selective binding of proteins to membrane, depending on its curvature,
and the partitioning of lipids into curvature-changing regions, also gives the
possibility of creating local microenvironments on the membrane (see also Sec-
tion 6.2). For instance, specific membrane curvature values could help either in
the segregation of transmembrane proteins to incorporate them in vesicles or
in membrane tubules, or even in the preferential localization of ion channels in
membrane protrusions.

The formal description of curvature-generating mechanisms is not a trivial
task. Indeed, many physical and biological aspects of the interactions between
proteins and the membrane should be considered. For instance, the structure and
elasticity properties of the cellular membrane, and the electrostatic interactions
and chemical bonds among proteins, play an important role in the formation
of local (sometimes transient) areas with differential curvature. Hence, these
properties should be incorporated into the parametric 2-dimensional membrane
framework, in order to characterize the changes in the surface curvature as a con-
sequence of membrane and proteins interactions. A possible way to do this is to
associate to specific neighbor proteins a coefficient that describes the “strength”
of their bond; then, assume that, when this force is strong enough (is above
some threshold), a positive or negative curvature modification (invagination or
extroversion) takes place at the local area where these proteins reside upon the
membrane surface.

An example of highly modified curvature occurring in small local areas of
the surface membrane is given by the creation of budding vesicles, involved in
endocytosis or exocytosis processes. When this is due to coat proteins (hence to
the clustering and binding of many peripheral proteins of the same type), then
this can be formalized with the parametric membrane surface. For instance, one
might define the additional operation of encapsulation: it should involve the
occurrence of many membrane proteins of the same type residing in adjacent
intersection points (e.g., occupying a predefined set D). Whenever such a lo-
cal condition is satisfied, then the portion of the surface corresponding to D is
“removed” from the membrane, thus simulating the budding of a vesicle. When
considering also communication features, and the presence of internal and exter-
nal multisets, then the vesicles can be used to transport objects from a membrane
to an adjacent (internal or external) one.

Finally, we remark that in the study of curvature generating mechanisms, the
formation of cell shape due to cytoskeletal elements can be more challenging
to formalize — most probably this would require an additional extension of the
framework presented in this paper.

6.4 New Conceptualizations of Membrane Architecture

The seminal “fluid mosaic model” ([35]) was based on the principle of Brownian
motion, which explains molecular diffusion as the macroscopic effect of thermal
agitation processes, by which molecules are always moving around and collid-
ing with each other. Recent experimental evidence indicated that the lateral

36 D. Besozzi and G. Rozenberg

movements of membrane components is not so free, but constrained by various
mechanisms and phenomena, such as the presence of membrane microdomains
or interactions with cytoskeleton elements. Indeed, several aspects of membrane
dynamics cannot be explained by the Singer-Nicolson model: e.g., (1) the consid-
erably smaller (by factors of 5 to 50) diffusion coefficients of plasma membrane
with respect to those in artificial membranes, or (2) the reduced diffusion or im-
mobilization (after the formation) of oligomers or other big molecular complexes.

Therefore, new models for membrane organization have been recently pro-
posed in [22,24] suggesting that the membrane is “more mosaic than fluid” ([17])
and it can be seen as a compartmentalized fluid where proteins have differential
interactions in a crowded environment, the membrane thickness is variable and
diffusion is not due to a pure Brownian motion. Light microscopy methodologies
are currently used for studying such dynamic processes in living cells. In particu-
lar, high-speed single-molecule tracking methods (with nanometer-level precision
and smallest time resolution) helped in observing actual movements of lipids and
proteins upon the plasma membranes of many types of cells ([22]). The entire
plasma membrane — except for clathrin-coated pits, microvilli, cell-cell and cell-
substrate junctions — is partitioned into many submicron-sized compartments
where molecules undergo short-term confined diffusion (within a compartment),
and long-term hop diffusion between adjacent compartments (where molecules
become again temporarily trapped)3. Moreover, the fact the it takes time to
hop from a compartment to an adjacent one, can explain the high disparity be-
tween diffusion coefficients in the plasma membrane and diffusion coefficients in
reconstituted membranes.

Rafts and cytoskeleton are the two main compartmentalizing forces at work
in the plasma membrane. In [22], the membrane-skeleton fence model and the
anchored-transmembrane protein pickets model are introduced to discuss the role
of cytoskeleton in membrane compartmentalization. According to these models,
the cytoskeleton actin elements form the “fences”, and the transmembrane pro-
teins anchored to the cytoskeleton form the “pickets”. The fluctuating lattice
formed by transmembrane proteins and actin-based skeleton elements creates
the barriers which restrict the lateral diffusion of membrane molecules. The
hopping movement between compartments happens when, due to thermal fluc-
tuations, a transient gap is formed between the membrane and the cytoskeleton
thus allowing the passage of the cytoplasmic domain of moving transmembrane
proteins.

The two models can also give reason of the reduced diffusion rate, or immo-
bilization, of membrane molecules upon oligomerization or complex formation.
Indeed, monomers can hop across the fence barriers with relative ease, but the
complexes as a whole have to hop all at once and hence they are character-
ized by a much slower rate of hopping between the compartments. It is also
suggested that this oligomerization-induced trapping might be important in sig-
naling transduction, by temporary confining cytoplasmic signals to the place

3 The fluid mosaic model agrees with this new paradigms when limited to the events
occurring in membrane areas of 10 nm X 10 nm dimension.

Formalizing Spherical Membrane Structures and MP Populations 37

where the extracellular signal was received. We refer to reviews [22] and [24] for
further details concerning new conceptualizations of membrane architecture.

The fence and pickets models can be formalized within the framework of the
parametric surface membrane, even without considering a formal description of
the cytoskeleton. Indeed, its role in the formation of fences can be simulated by
singling out the “borders” of the compartmentalized lattice over the membrane
surface (by identifying them with sub-portions of parallels and meridians). The
proteins residing upon the intersection points characterizing the lattice consti-
tute the pickets.

Lattice and protein pickets positions could also be considered as varying in
time, but on a slower time scale with respect to the movement of proteins upon
the membrane surface due to the application of the operations defined in Section
4. Moreover, the movement of proteins inside a fenced compartment should be
characterized by a rate different from the one corresponding to the hop move-
ments between adjacent compartments.

Finally, to have a formal description of the oligomers formation, the assump-
tion of self-avoidance sharing at intersection points has to be dropped. In this
case, the monomers are to be treated in a different way, allowing their co-presence
at an intersection point. As before, the rate of movement of an oligomer can then
be modified to take into account the fact that it is more difficult for an oligomer
to change its position on the surface.

6.5 Computational Aspects of the Parametric Membrane Surface

The structure and functioning of membranes is central both for membrane com-
puting (see, e.g., [28] and [30]) and brane calculi (see, e.g., [11]). In membrane
computing (which was developed much earlier) the objects (molecules) are pro-
cessed in regions which are delimited by membranes, while in brane calculi the
objects are processed on membranes.

A number of recent papers, beginning with [12], consider a merger of the
two approaches. In [12], P systems based on brane operations were considered:
objects are now placed on the membrane, as a natural correspondence to mem-
brane proteins. Then, in [15] the projective version of brane calculi was pro-
posed, where proteins are placed and active, or visible, only on one side of the
membrane. A similar perspective, taking inspiration from the distinction be-
tween integral and peripheral proteins, was considered also in [8]. Several other
papers associating protein objects to the membranes recently appeared; an up-
to-date bibliography of these topics can be found at the P Systems Web Page:
http://psystems.disco.unimib.it.

In (mem)brane systems, usually multisets of objects representing proteins are
associated with the membranes. Moreover, as indicated several times in the pre-
vious sections, in most of cellular processes occurring on membranes the position
of proteins is important. To account for this, a (circular) string of protein objects
— rather than a multiset — can be associated with each membrane, providing in
this way a formal structure where the position of each object is known and fixed
with respect to all other objects appearing in the string. Then, the parametric

38 D. Besozzi and G. Rozenberg

membrane surface can be seen as a 2-dimensional extension of this formal rep-
resentation where, given any object residing on a parallel (the circular string),
one knows not only its left and right neighbors, but also its upper and lower (as
well as diagonal) neighbors.

The use of circular words and operations for protein movement, either on 1-
dimensional or on 2-dimensional membranes, provides an alternative approach to
(mem)brane systems for the formal expression of symbolic membrane proteins,
and thus for the analysis of the computational properties of the corresponding
systems.

Another suggestion for the analysis of computational topics comes from the
definition of functionality of transport proteins. Usually, in the area of membrane
computing, the communication of objects across membrane occurs in a non-
selective way (any object type can be moved from one region to an adjacent
one, unless some restrictions are imposed). Also one allows the passage of an
unbounded number of objects at each step (due to the maximal parallelism at
the level of rule application). But, as we have seen in Section 5, each transport
protein allows only a prescribed number of objects to cross the membrane, and
moreover this movement happens in a specific direction and for specific types of
objects. Hence, new communication rules could be defined in membrane systems,
taking care of the number and the types of the transport proteins that are present
on each membrane (and this number can be modified by allowing also insertion
or deletion operations). An immediate consequence would be the “bounded and
selective” communication of objects.

This approach can be considered both for the 1-dimensional concept of mem-
brane and for the 2-dimensional surface. Formal language generative power or
decidability properties, as well as other computational aspects, can then be an-
alyzed in membrane systems with these additional features.

7 Final Remarks

Several aspects of cellular membranes as well as possible applications to biolog-
ical systems or computational models motivated this paper.

First of all, we have pointed out why the notion of membrane in P systems can-
not account for the concept of spatial neighborhood upon a real membrane. At
the same time, we have explained why this concept is important when considering
“objects” placed within/upon the membrane, such as MP populations. Therefore,
we have proposed to extend the notion of membrane to a 2-dimensional spherical
surface, whose parametrization defines a scaffolding grid for protein placements.
Then, operations acting on proteins can allow either their movement upon the
spherical membrane, or their insertion or removal from the membrane.

As a first step, we have proposed to use a spherical surface, parameterized
by means of parallels and meridians. However, it is known that living cells can
have very different shapes, thus other geometrical surfaces can be utilized for a
better description of processes occurring upon the plasma membrane of real cells.
Moreover, also different parameterizations, giving rise to specific tessellations of

Formalizing Spherical Membrane Structures and MP Populations 39

the surface, can be used as well. An interesting application would be to derive,
starting from the spherical surface, other distinct shapes emerging from local
and global dynamics (of proteins) on the membrane surface.

The formalization of the spherical membrane has been given for one mem-
brane only, but it could also be implemented as a part of a “modified” membrane
system. In this case, the (extended) notion of membrane structure would then
consists of a collection of spherical parametric membranes, contained inside a
unique external spherical membrane — the plasma membrane. In an extended
membrane structure, the concept of mutual position between spherical mem-
branes, together with their orientation in the 3-dimensional space, would have
to be defined as well.

Possible applications of the spherical membrane and MP populations have
been discussed for both biological and computational oriented analysis. In par-
ticular, the feasibility of this framework in biology also highlights the coexistence
of both a systemic approach and a (supra)molecular description of basic system
components (e.g., in the investigation of the ion flows occurring at the whole
plasma membrane — the systemic analysis, together with the characterization
of functioning and activation of single transport proteins — the basic elements
description).

Throughout the paper we have mostly referred to transmembrane proteins,
and focused the attention on the description of transport proteins. As a matter
of fact, the parametric membrane could be used to represent also the placement
(or the induced movements) of peripheral membrane proteins populations. This
can be easily done, without an essential change of the formal structure, just
by removing the self-avoidance sharing requirement. This extension would allow
the formalization of complex formation between integral and peripheral proteins,
possibly also considering the electrostatic interactions or other physical forces
depending on local membrane composition and density, as already discussed in
Section 6.

Acknowledgment. This work has been supported by the European Research
Training Network “Segravis”. We are indebted to Prof. H. Spaink for useful dis-
cussions at the beginning phase of this research paper.

References

1. S. Aguzzoli, I.I. Ardelean, D. Besozzi, B. Gerla, C. Manara, P systems under
uncertainty: the case of transmembrane proteins, Proceedings of Brainstorming
Workshop on Uncertainty in Membrane Computing, Palma de Mallorca, 8-10
November 2004, 107-117.

2. S. Aguzzoli, D. Besozzi, B. Gerla, C. Manara, P systems with vague boundaries:
the t-norm approach, Proceedings of Brainstorming Workshop on Uncertainty in
Membrane Computing, Palma de Mallorca, 8-10 November 2004, 97-105.

3. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology
of the Cell., 4th edition, Garland Science, New York, 2002.

40

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

D. Besozzi and G. Rozenberg

L.I. Ardelean, D. Besozzi, On modeling ion fluxes across biological membranes with
P systems, Proceedings of the Third Brainstorming Week on Membrane Comput-
ing (M.A. Gutiérrez-Naranjo, A. Riscos-Nunez, F.J. Romero-Campero, D. Sburlan
eds.), RGNC Report 01/2005, Sevilla, January 31 - February 4, 2005, 35-42.

. LI. Ardelean, D. Besozzi, Some notes on the interplay between P systems and

chemotaxis in Bacteria, Fourth Brainstorming Week on Membrane Computing,
Sevilla, January 30 - February 3, 2006, Volume I (M.A. Gutiérrez-Naranjo, G.
Paun, A. Riscos-Nunez, F.J. Romero-Campero eds.), RGNC REPORT 02,/2006,
Fénix Editora, Sevilla (2006), 41-48.

. LI. Ardelean, D. Besozzi, M.H. Garzon, G. Mauri, S. Roy, P system models for

mechanosensitive channels. In: G. Ciobanu, G. Paun, M.J. Pérez-Jiménez eds.,
Applications of Membrane Computing, Springer—Verlag, Berlin, 2005.

. P.W. Atkins, L.L. Jones, Chemistry: molecules, matter, and change. Third Edition,

W.H. Freeman and Co., New York, 1997.

. D. Besozzi, N. Busi, G. Franco, R. Freund, G. Paun, Two universality results

for (mem)brane systems, Fourth Brainstorming Week on Membrane Computing,
Sevilla, January 30 - February 3, 2006, Volume I (M.A. Gutiérrez-Naranjo, G.
Paun, A. Riscos-Nunez, F.J. Romero-Campero eds.), RGNC REPORT 02,/2006,
Fénix Editora, Sevilla (2006), 49-62.

. D. Besozzi, G. Ciobanu, A P system description of the sodium-potassium pump,

Membrane Computing, 5th International Workshop - WMC 2004 (G. Mauri, G.
Paun, M.J. Pérez-Jiménez, G. Rozenberg, A. Salomaa eds.), LNCS 3365, Springer-
Verlag, Berlin, 2005, 210-223.

D.A. Brown, E. London, Functions of lipid rafts in biological membranes, Annu.
Rev. Cell Dev. Biol., 14, 1998, 111-136.

L. Cardelli, Brane calculi. Interactions of biological membranes, Computational
Methods in Systems Biology. International Conference CMSB 200/, Paris, France,
May 2004, Revised Selected Papers (V. Danos, V. Schachter, eds.), LNCS 3082,
Springer-Verlag, Berlin, 2005, 257-280.

L. Cardelli, G. Pdun, An universality result for (mem)brane calculus based on
mate/drip operations, International Journal of Foundations of Computer Science,
17, 1, 2006, 49-68.

W. Cho, R.V. Stahelin, Membrane-protein interactions in cell signaling and mem-
brane trafficking, Annu. Rev. Biophys. Biomol. Struct., 34, 2005, 119-151.

F. Cossu, Modelli discreti per il trasporto del calcio attraverso la membrana plas-
matica, Graduation Thesis, University of Milano, Italy, 2005.

V. Danos, S. Pradalier, Projective brane calculus, Computational Methods in
Systems Biology: International Conference CMSB 2004, Paris, France, May 26-
28, 2004, Revised Selected Papers, (V. Danos, V. Schachter, eds.), LNCS 3082,
Springer-Verlag, Berlin, 2005, 134-148.

M. Dean, The Human ATP-Binding Cassette (ABC) Transporter Superfamily, Na-
tional Library of Medicine (US), NCBI, 2002 (http://www.ncbi.nlm.nih.gov/).
D.M. Engelman, Membranes are more mosaic than fluid, Nature, 438, 2005, 578—
580.

M. Fill, J.A. Copello, Ryanodine receptors calcium release channels, Physiol. Rev.,
82, 2002, 893-922.

E. Gouaux, R. MacKinnon, Principles of selective ion transport in channels and
pumps, Science, 310, 2005, 1461-1465.

M.S. Jurica, B.L. Stoddard, Mind your B’s and R’s: bacterial chemotaxis, signal
transduction and protein recognition, Current Biology, 6, 1998, 809-813.

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Formalizing Spherical Membrane Structures and MP Populations 41

C. Kosniowski, A First Course in Algebraic Topology, Cambridge University Press,
1980.

A. Kusumi, C. Nakada, K. Ritchie, K. Murase, K. Suzuki, H. Murakoshi, R.S.
Kasai, J. Kondo, T. Fujiwara, Paradigm shift of the plasma membrane concept from
the two-dimensional continuum fluid to the partitioned fluid: high-speed single-
molecule tracking of membrane molecules, Annu. Rev. Biophys. Biomol. Struct.,
34, 2005, 351-378.

H. Lodish, A. Berk, S.L. Zipursky, P. Matsudaira, D. Baltimore, J.E. Darnell,
Molecular Cell Biology. 4th Ed., W.H. Freeman and Co., New York, 2000.

D. Marguet, P.F. Lenne, H. Rigneault, H.T. He, Dynamics in the plasma mem-
brane: how to combine fluidity and order, The EMBO Journal, 25, 2006, 3446-3457.
H.T. McMahon, J.L. Gallop, Membrane curvature and mechanisms of dynamic cell
membrane remodelling, Nature, 438, 2005, 590-596.

N. Palmieri, Un approccio stocastico alla modellazione del canale RyR, Graduation
Thesis, University of Milano, Italy, 2006.

M.J. Pérez-Jiménez, F.J. Romero-Campero, Modelling EGFR signalling cascade
using continuous membrane systems. Proceedings of CMSB2005 (G. Plotkin, ed.),
Edinburgh, 3-5 April 2005, 118-129.

G. Paun, Computing with membranes, Journal of Computer and System Sciences,
61, 1 (2000), 108-143.

G. Paun, Computing with membranes — A variant: P systems with polarized mem-
branes, International Journal of Foundations of Computer Science, 11, 1, 2000,
167-182.

G. Paun, Membrane Computing. An introduction, Springer—Verlag, Berlin, 2002.
G.A. Petsko, D. Ringe, Protein Structure and Function, New Science Press Ltd.,
2004.

K.D. Philipson, D.A. Nicoll, Sodium-calcium exchange: a molecular perspective,
Annual Review of Physiology, 62, 2000, 111-133.

I.I. Serysheva, Structural insights into excitation-contraction coupling by electron
cryomicroscopy, Biochemistry (Moscow), 69, 11, 2004, 1226-1232.

S.J. Singer, Some early history of membrane molecular biology, Annual Review of
Physiology, 66, 2004, 1-27.

S.J. Singer, G.L. Nicolson, The fluid mosaic model of the structure of cell mem-
branes, Science, 175, 1972, 720-731.

J.M. Ward, Patch-clamping and other molecular approaches for the study of plasma
membrane transporters demystified, Plant Physiology, 114 (1997), 1151-1159.

W. Wickner, R. Schekman, Protein translocation across biological membranes,
Science, 310, 2005, 1452-1456.

J. Zimmerberg, M.M. Kozlov, How proteins produce cellular membrane curvature,
Nature Reviews Molecular Cell Biology, 7, 2006, 9-19.

Quorum Sensing: A Cell-Cell Signalling
Mechanism Used to Coordinate Behavioral
Changes in Bacterial Populations

Miguel Camara

Institute of Infection, Immunity and Inflammation
Centre for Biomolecular Sciences
University of Nottingham, Nottingham NG7 2RD, UK
miguel.camara@nottingham.ac.uk

1 The Quorum Sensing Concept

One of the most important mechanisms for bacterial cell-to-cell communication
and behavior coordination under changing environments is often referred to as
“quorum sensing” (QS). QS relies on the activation of a sensor kinase or re-
sponse regulator protein by, in many cases, a diffusible, low molecular weight
signal molecule (a “pheromone” or “autoinducer”) (Cédmara et al., 2002). Con-
sequently, in QS, the concentration of the signal molecule reflects the number
of bacterial cells in a particular niche and perception of a threshold concen-
tration of that signal molecule indicates that the population is “quorated”, i.e.
ready to make a behavioral decision. Bacteria cell-to-cell communication is per-
haps the most important tool in the battle for survival; they employ commu-
nication to trigger transcriptional regulation resulting in sexual exchange and
niche protection in some cases, to battle host’ defences and coordinate popula-
tion migration. Ultimately, bacteria cell-to-cell communication is used to effect
phenotypic change. The importance of coordinated gene-expression (and hence
phenotypic change) in bacteria can be understood if one realizes that only by
pooling together the activity of a quorum of cells can a bacterium be successful.
It is increasingly apparent that, in nature, bacteria function less as individuals
and more as coherent groups that are able to inhabit multiple ecological niches
(Lazdunski et al., 2004). Within quorum sensing process several key elements
must be considered: (i) the gene(s) involved in signal synthesis, (ii) the gene(s)
involved in signal transduction, and (iii) the QS signal molecule(s).

In Gram-negative bacteria, some of the most studied signal molecules are the
N-acylhomoserine lactones (AHLs) (Fig. 1A). During the growth of a bacterial
population, signal molecules either diffuse or are exported out of the cell into
the surrounding environment; their concentration increases and they then act
on neighboring bacterial cells. Achievement of a critical threshold concentration
results in: (i) activation of a sensor/response regulator, responsible for signal
transduction (T, which in turn triggers the expression of multiple genes and (ii)
activation positive autoinductive feedback loop to amplify QS signal molecule
generation (Figure 1B).

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 42-48, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Quorum Sensing: A Cell-Cell Signalling Mechanism

43

B

|'I_\\
) Lrsdsmand 2L
Ay
H "
o 5
o 0 I."_\0 @3&3\/\/\ Amplification
HJ\)\HA S y
L +
& G o Pseudomonas Quinolene Signal (PGS)
A A e
H
s
M-zzyl homosaring lactones [AHLs) ::%.c::lumﬂ;:"mxm

Fig.1. A: Chemical structures of N-acylhomoserine lactones and PQS. B: Generic
quorum sensing signal generation and transduction circuit.

Hence the term “autoinducer” is sometimes used to describe the QS signal
molecule. Important in governing the size of the “quorum” is ‘compartment
sensing’ (Winzer et al., 2002). The concentration of a given QS signal molecule
may be a reflection of bacterial cell number, or at least the minimal number
of cells (quorum) in a particular physiological state. To achieve the accumula-
tion of a QS signal there is a need for a diffusion barrier, which ensures that
more molecules are produced than lost from a given microhabitat. This ‘com-
partment sensing’ enables the QS signal molecule to be both a measure of the
degree of compartmentalization and the means to distribute this information
through the entire population. Likewise, the diffusion of QS signal molecules
between detached subpopulations may convey information about their numbers,
physiological state and the specific environmental conditions encountered.

2 Quorum Sensing in P. aeruginosa: A Complex
Regulatory Network Resulting in Fine Signal Tuning

Pseudomonas aeruginosa is a very versatile organism that can adapt to many
different environments and can cause diseases in plants, animals, and humans
(Rahme et al., 1995). It possesses a large 6.3MB genome encoding 5,570 pre-
dicted genes including 521 putative regulatory genes suggesting the existence
of a highly complex gene regulation which enables it to adapt quickly to envi-
ronmental changes (Stover et al., 2000). This organism produces a broad range
of exoproducts, which are regulated in a population density-dependent man-
ner via cell-to-cell communication or “quorum sensing” (Cdmara et al., 2002).
Two intertwined QS systems (the las and the rhl systems) have been shown to
be involved in virulence, biofilm development, and many other processes in P.
aeruginosa (Gambello and Iglewski, 1991; Latifi et al., 1995; Ochsner and Reiser,
1995; Passador et al., 1993). These QS systems produce and respond to specific
AHL signal molecules (Pearson et al., 1994; Winson et al., 1995). In addition,

44 M. Camara

each system modulates a regulon comprising an overlapping set of genes. How-
ever, the las and the rhl systems are not independent of each other, but form
a regulatory hierarchy where LasR-C12-HSL activates the transcription of rhlR
(Latifi et al., 1996; Pesci et al., 1997) (Figure 2). Transcriptome analysis of P.
aeruginosa has revealed that N-acylhomoserine lactone (AHL)-dependent QS
regulates up to 10% of the genes in the genome of this organism (Schuster et al.,
2003; Whiteley et al., 1999).

©
©
6
—®
©
0

Biofilms

Elastase

Exotoxin A
LasA p otease
PQS

Swa ming motility

Additional phenotypes

Ny

Elastase

Hyd ogen cyanide
LasAp otease

Lectin (PA IL & PA TIL)
Pyocyanin

RpoS

Additional phenotypes

Fig. 2. Interactions between the different regulators of QS in P. aeruginosa (— indi-
cates positive regulation and - negative regulation)

In addition to AHLs, P. aeruginosa releases a 4-quinolone signal molecule
into the extra-cellular milieu, the synthesis and bioactivity of which has been re-
ported to be mediated via the las and rhl systems respectively. This molecule has
been chemically identified as 2-heptyl-3-hydroxy-4(1H)-quinolone and termed
the Pseudomonas Quinolone Signal (PQS) (Fig. 1) (Pesci et al., 1999). LasR has
been shown to regulate PQS production and the provision of exogenous PQS
induces expression of lasB (coding for elastase), rhil and rhlR (McKnight et al.,
2000; Pesci et al., 1999) suggesting that PQS activity constitutes a regulatory
link between the las and Thl QS systems. The QS-dependent production of ex-
oproducts in P. aeruginosa is tightly regulated with respect to growth phase
and growth environment. In contrast to the AHL-dependent induction of biolu-
minescence in Vibrio fischeri (Eberhard et al., 1981) and carbapenem antibiotic

Quorum Sensing: A Cell-Cell Signalling Mechanism 45

production in Frwinia carotovora (Williams et al., 1992), the provision of ex-
ogenous AHLs does not advance the expression of several QS dependent genes
in wild type P. aeruginosa PAO1 such as lecA, lasB or rhiR expression (Dig-
gle et al., 2002; Pearson, 2002). This is due to the contribution of additional
regulatory factors in addition to LasR and RhIR. Figure 2 shows a simplified
diagram of how the different regulators have so far been shown to interact with
the QS regulatory cascade at both the transcriptional and posttranscriptional
level. This shows an example of the intricate control of QS-mediated responses
by a network of regulators which results in a fine tuning of adaptive responses
to environmental changes.

3 Potential Approaches for Systems Biology-Based Study
of Regulatory Networks in P. aeruginosa

To gain a better understanding on how regulatory networks in P. aeruginosa,
or any other organisms using quorum sensing-mediated signalling mechanisms,
work, there are a number of key questions that need to be address: (i) what are
the key parameters governing the relationship between QS master switches? (ii)
how do cellular regulatory networks fine tune into the QS regulatory cascade?
(iii) for genes directly regulated by more than one regulatory system what are
the rules that determine the establishment of the hierarchical control? To answer
these questions two possible systematic approaches could be used. On one hand,
the regulatory networks could be analyzed using a “zoom in” model, starting by
studying phenotypic changes and eventually identifying their tuning with key
cellular regulators (Figure 3). In this particular model a bacterial population
could be subjected to certain inputs determined by changes in environmental
conditions. This would result in phenotypic changes which could be measured.
If the biology of the organism is reasonably known, these changes could be
linked to transcriptional alterations of previously characterized target genes.
Subsequently, using a number of genetic tools such as those described by Diggle
et al for P. aeruginosa (Diggle et al., 2002), novel regulators for those target genes
could be identified. The validation of this model could be done by testing whether
changes in environmental conditions, identical to those used before, would result
in the same alteration on the activity of the transcriptional regulators identified,
their target genes and the corresponding phenotypes.

Alternatively, a “zoom out” model going from the understanding of the rela-
tionship between core regulators to the way they influence phenotypic changes in
a bacterium. This approach, shown in Figure 4 would start by investigating the
relationship between known core regulators such us the rhl, las or PQS systems
in P. aeruginosa, and their supraregulators. The next step up would require
moving out one layer and investigating the effect alterations in these regulators
would have on the expression of their target genes resulting in specific pheno-
typic changes which could be measured. Validation of this model could be done
by verifying that specific alteration to the activity of the regulators results in

46 M. Camara

“Zoom in” model

INPUT
change in
environmental
condition

QS Target
gUTP!;;; " \dentification

=/

Identification
of QS regulators

Fig. 3. Systems-biology based “Zoom in” approach to study regulatory networks in

P. aeruginosa

“Zoom out’ model

Phenotypi
change

_—

Constant environmental

Fig. 4. Systems-biology based “Zoom out” approach to study regulatory networks in

P. aeruginosa

Quorum Sensing: A Cell-Cell Signalling Mechanism 47

the predicted phenotypic changes. This type of approach could be simplified by
using constant environmental conditions.

Although other systematic models could be used to study the complexity of

P. aeruginosa QS regulatory networks, these two approaches are perhaps the
most straight forward ones.

References

1.

10.

11.

12.

13.

Cédmara, M., Williams, P., and Hardman, A. (2002) Controlling infection by tuning
in and turning down the volume of bacterial small-talk. Lancet Infectious Diseases
2: 667-676.

. Diggle, S.P., Winzer, K., Lazdunski, A., Williams, P., and Camara, M. (2002)

Advancing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of
N-acylhomoserine lactone production and virulence gene expression. Journal of
Bacteriology 184: 2576—-2586.

. Eberhard, A., Burlingame, A.L., Eberhard, C., Kenyon, G.L., Nealson, K.H.,

and Oppenheimer, N.J. (1981) Structural identification of autoinducer of
Photobacterium-Fischeri luciferase. Biochemistry 20: 2444-2449.

. Gambello, M.J., and Iglewski, B.H. (1991) Cloning and characterization of the

Pseudomonas aeruginosa LasR gene, a transcriptional activator of elastase expres-
sion. Journal of Bacteriology 173: 3000-3009.

. Latifi, A., Foglino, M., Tanaka, K., Williams, P., and Lazdunski, A. (1996) A

hierarchical quorum sensing cascade in Pseudomonas aeruginosa links the tran-
scriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase
sigma factor RpoS. Molecular Microbiology 21: 1137-1146.

. Latifi, A., Winson, M.K., Foglino, M., Bycroft, B.W., Stewart, G., Lazdunski, A.,

and Williams, P. (1995) Multiple homologs of LuxR and Luxl control expression
of virulence determinants and secondary metabolites through quorum sensing in
Pseudomonas aeruginosa PAO1. Molecular Microbiology 17: 333-343.

. Lazdunski, A.M., Ventre, 1., and Sturgis, J.N. (2004) Regulatory circuits and com-

munication in gram-negative bacteria. Nature Reviews Microbiology 2: 581-592.

. McKnight, S.L., Iglewski, B.H., and Pesci, E.C. (2000) The Pseudomonas quinolone

signal regulates rhl quorum sensing in Pseudomonas aeruginosa. Journal of
Bacteriology 182: 2702-2708.

. Ochsner, U.A., and Reiser, J. (1995) Autoinducer-mediated regulation of rham-

nolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proceedings of the
National Academy of Sciences of the United States of America 92: 6424-6428.
Passador, L., Cook, J.M., Gambello, M.J., Rust, L., and Iglewski, B.H. (1993)
Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell com-
munication. Science 260: 1127-1130.

Pearson, J.P. (2002) Early activation of quorum sensing. Journal of Bacteriology
184: 2569-2571.

Pearson, J.P., Gray, K.M., Passador, L., Tucker, K.D., Eberhard, A., Iglewski, B.H.,
and Greenberg, E.P. (1994) Structure of the autoinducer required for expression of
Pseudomonas aeruginosa virulence genes. Proceedings of the National Academy of
Sciences of the United States of America 91: 197-201.

Pesci, E.C., Milbank, J.B.J., Pearson, J.P., McKnight, S., Kende, A.S., Greenberg,
E.P., and Iglewski, B.H. (1999) Quinolone signaling in the cell-to-cell communication
system of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences
of the United States of America 96: 11229-11234.

48

14.

15.

16.

17.

18.

19.

20.

21.

M. Camara

Pesci, E.C., Pearson, J.P., Seed, P.C., and Iglewski, B.H. (1997) Regulation of las
and rhl quorum sensing in Pseudomonas aeruginosa. Journal of Bacteriology 179:
3127-3132.

Rahme, L.G., Stevens, E.J., Wolfort, S.F., Shao, J., Tompkins, R.G., and Ausubel,
F.M. (1995) Common virulence factors for bacterial pathogenicity in plants and
animals. Science 268: 1899-1902.

Schuster, M., Lostroh, C.P., Ogi, T., and Greenberg, E.P. (2003) Identification,
timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes:
a transcriptome analysis. Journal of Bacteriology 185: 2066—2079.

Stover, C.K., Pham, X.Q., Erwin, A.L., Mizoguchi, S.D., Warrener, P., Hickey,
M.J., Brinkman, F.S.L., Hufnagle, W.O., Kowalik, D.J., Lagrou, M., Garber, R.L.,
Goltry, L., Tolentino, E., Westbrock-Wadman, S., Yuan, Y., Brody, L.L., Coulter,
S.N., Folger, K.R., Kas, A., Larbig, K., Lim, R., Smith, K., Spencer, D., Wong,
G.K.S., Wu, Z., Paulsen, I.T., Reizer, J., Saier, M.H., Hancock, R.E.W., Lory, S.,
and Olson, M.V. (2000) Complete genome sequence of Pseudomonas aeruginosa
PAO1, an opportunistic pathogen. Nature 406: 959-964.

Whiteley, M., Lee, K.M., and Greenberg, E.P. (1999) Identification of genes con-
trolled by quorum sensing in Pseudomonas aeruginosa. Proceedings of the National
Academy of Sciences of the United States of America 96: 13904-13909.

Williams, P.; Bainton, N.J., Swift, S., Chhabra, S.R., Winson, M.K., Stewart,
G., Salmond, G.P.C., and Bycroft, B.W. (1992) Small molecule-mediated density-
dependent control of gene-expression in prokaryotes - Bioluminescence and the
biosynthesis of carbapenem antibiotics. Fems Microbiology Letters 100: 161-167.
Winson, M.K., Cdmara, M., Latifi, A., Foglino, M., Chhabra, S.R., Daykin, M.,
Bally, M., Chapon, V., Salmond, G.P.C., Bycroft, B.W., Lazdunski, A., Stewart,
G., and Williams, P. (1995) Multiple N-acyl-L-homoserine lactone signal molecules
regulate production of virulence determinants and secondary metabolites in Pseu-
domonas aeruginosa. Proceedings of the National Academy of Sciences of the
United States of America 92: 9427-9431.

Winzer, K., Hardie, K.R., and Williams, P. (2002) Bacterial cell-to-cell communi-
cation: Sorry, can’t talk now - gone to lunch! Current Opinion in Microbiology 5:
216-222.

A Modeling Approach Based on P Systems with
Bounded Parallelism

Francesco Bernardini!, Francisco J. Romero-Campero?, Marian Gheorghe?,
and Mario J. Pérez-Jiménez?

! Leiden Institute of Advanced Computer Science
University of Leiden
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
bernardi@liacs.nl
2 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Seville, Avda. Reina Mercedes, 41012 Sevilla, Spain
{fran,marper}@cs.us.es
3 Department of Computer Science, The University of Sheffield
Regent Court, Portobello Street, Sheffield S1 4DP, UK
M.Gheorghe@dcs.shef.ac.uk

Abstract. This paper presents a general framework for modelling with
membrane systems that is based on a computational paradigm where
rules have associated a finite set of attributes and a corresponding func-
tion. Attributes and functions are meant to provide those extra features
that allow to define different strategies to run a P system. Such a strat-
egy relying on a bounded parallelism is presented using an operational
approach and applying it for a case study presenting the basic model of
quorum sensing for Vibrio fischeri bacteria.

1 Introduction

In 1998, Gheorghe Paun initiated the field of research called membrane com-
puting with a paper firstly available on the web and later published in [19].
Membrane computing aims at defining computational models which abstract
from the functioning and structure of the cell. In particular, membrane comput-
ing starts from the observation that compartmentalization through membranes
is one of the essential features of (eucaryotic) cells. Unlike bacterium, which
generally consists of a single intracellular compartment, a(n) (eucaryotic) cell is
sub-divided into functionally distinct compartments. Thus, a class of computing
devices called membrane systems, or P systems, are defined [19], which have
three essential features: a membrane structure consisting of a hierarchical ar-
rangement of several compartments defined as regions delimited by membranes;
objects assigned to regions; and rules assigned to the regions of the membrane
structure, acting upon the objects inside. In particular, each region is supposed
to contain a finite set of rules and a finite multiset (or set) of objects. Rules en-
code generic processes for producing/consuming objects and for moving objects
from one region to the other. Objects are described either as symbols from a

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 49-65, 2006.
© Springer-Verlag Berlin Heidelberg 2006

50 F. Bernardini et al.

given alphabet or as strings over a given alphabet. The application of the rules
is performed in a non-deterministic maximally parallel manner: all the applica-
ble rules that should be used to modify existing objects must be applied, and
this is done in parallel for all membranes.

Since this model was introduced for the first time in 1998, many variants of
membrane systems have been proposed and studied — a comprehensive bibliog-
raphy of P systems can be found at the P systems web page [29]. The most
investigated membrane system topics are related to the computational power
of different variants, their capabilities to solve hard problems, like NP-complete
problems, decidability, complexity aspects and hierarchies of classes of languages
produced by these devices.

Membrane computing represents nowadays a research area of a larger inter-
disciplinary field called natural computing, that involves scientists studying the
emergence of new computational paradigms inspired from the behavior of vari-
ous natural phenomena. In the same time there is a growing interest in apply-
ing mathematical and computational paradigms to model real natural systems.
Computational biology is such a field, where mathematical and computational
models of biological systems are designed for the analysis and simulation of the
behavior of these systems. Biological modeling has involved standard continuous
and stochastic mathematical approaches, as well as discrete models. Standard
mathematical models with their simulation techniques have proved to be pow-
erful tools for understanding the dynamics of biological systems (e.g., see [25],
[26]). Discrete modeling instead advocates the use of different formalisms taken
from various areas of computer science (e.g., formal grammars [6], Petri nets [16],
X machines [9], [27], process algebra [24], [3], statecharts [15], etc.) to develop
computational models of biological systems.

This paper presents a general framework for modeling with membrane systems
that is based on a model of P systems where rules have associated a finite set
of attributes and a corresponding function. Attributes and functions are meant
to provide those extra features which are necessary to close the “gap” between
the abstractness of more standard P system models and the “reality” of the
phenomenon to be modeled (Section 2). The behavior of such P systems is defined
in Section 3 in terms of bounded parallelism, which precisely formalizes the idea
of a membrane system as a system where a certain number of components evolve
in parallel at the same time by means of a certain number of rules applied inside
each one of these components. Then, in Section 4, as a particular instance of the
general model, we consider P systems where rules have associated a real constant
as an attribute and the corresponding function is used to compute a value of
a probability depending on this constant and on certain multisets of objects
defining the context where the rule is applied; for this particular variant of P
systems, we also define a strategy for the application of the rules which, in each
step, selects the next rule to be applied depending on the aforementioned values
of probabilities. Finally, in Section 5, as a case study, we present a P system
model for the quorum sensing mechanism of bacterial cell-to-cell communication.

A Modeling Approach Based on P Systems with Bounded Parallelism 51
2 The Model

Usually a P system is defined as a hierarchical arrangement of a number of
membranes identifying a corresponding number of regions inside the system, and
with these regions having associated a finite multiset of objects and a finite set of
rules. Moreover, one can also consider membrane systems where the underlying
structure is defined as an arbitrary graph like in tissue P systems [20], and in
population P systems [1]. In this paper, we only focus on membrane systems
of the former type where the underlying structure is defined as being a tree of
nested membranes.

Rules of many different forms have been considered for membrane systems in
order to encode the operation of modifying the objects inside the membranes
and the operation of moving objects from one place to the other. In particu-
lar, for communicating objects, one can use either the targets here,in, out, or
symport/antiport rules, or boundary rules [20].

Here, in order to capture the features of most of these rules, we consider rules
of the form:

ulv] —u'[v'] 1)

with u,v,u,v" some finite multisets. These rules are generalized boundary rules
operating as multiset rewriting rules which simultaneously replace a multiset of
objects placed outside the membrane and a multiset of objects placed inside the
membrane with two new multisets placed in the same places. In this way, we
are able to capture in a concise way the essential features of transformation and
communication of objects usually considered in the area of membrane computing.
Moreover, from a modeling point of view, rules like (1) allow us to express
any sort of interactions occurring at the membrane level, like, for instance, the
binding of a signal molecule to a specific receptor which occurs at cell-surface
level (e.g., see [21]).

We associate to each rule a finite set of attributes in order to be able to
capture specific quantitative aspects of the phenomenon to be modeled. Specifi-
cally, these attributes are used by rules as different reaction rates and/or different
probabilities which overall affects the strategy of the application of the rules.

Definition 1 (program). Let V, K be alphabets, let D be a set (possibly infi-
nite), and let A be a finite subset of D. The set D is called the set of values and
the set A is called the set of attributes. Let F = {f1, fa,..., fp} be a finite set
of functions such that, for all1 <t <n, fi : P(D)x V*x V*x V*xV* — D
with P(D) the family of all subsets of D. A program (over V, K, D, A/ F) is a
construct (u[v] — u' [v'],0, fi); where: u,v,u',v" € O*, 0 C A, f; € F, for
somel <i<p,andl € K.

Thus, a program consists of a rule, a finite set of attributes and a function
which, given this set of attributes and four multisets, returns a value from a
certain chosen set. In particular, the first two multisets are usually considered
as being the two multisets placed on the left side of the rule; the two remaining
multisets are instead supposed to be the multisets placed respectively inside

52 F. Bernardini et al.

and outside a given membrane. That is, each function is expected to compute a
particular value depending on the rule and on the contents of the outside and
the inside regions that define the “context” where the rule is applied.

Here our main focus is in modeling systems consisting of many different bio-
chemical reactions distributed across different compartments. Therefore, the
following interpretation for programs will be predominantly used throughout
the paper. Objects represent chemicals and multisets of objects are interpreted
as “bags” or “soup” of chemicals. Rules model transformations involving these
chemicals. Each rule has associated a finite set of attributes and a corresponding
function defining particular properties that affect the behavior of the rule itself;
these properties are usually said to define the reactivity of the rule (e.g., see [2],
[21]). Moreover, since we want to have systems consisting of many different com-
partments, we assign to each program a label to differentiate the set of programs
from one compartment to the other.

Remark 1. Although the aforementioned interpretation will be mainly used in
this paper, it is not the unique possible and that is why we introduce the notions
of set of values and set of attributes in a more generic fashion. For instance, one
may use attributes to model properties inherent to the membranes and may
use the corresponding function to update these attributes every time a rule is
applied. Alternatively, one may consider hybrid models where the attributes
represent continuous variables which are updated through the use of certain
functions (e.g., see [9] for hybrid X machines, and [16] for hybrid Petri nets).

Next, we introduce the notion of P specification which makes explicit the basic
components necessary to define a particular P system model.

Definition 2 (P specification). A P specification is a construct

§=(V,K,D,AF,P)

where:

1. 'V is an alphabet; its elements are called objects;

2. K is an alphabet; its elements are called labels;

3. D is a set of values;

4. A C D is a finite set of attributes;

5. F=A{f1,f2,---, [p} is a finite set of functions as in Definition 1.

6. P is a finite set of programs over V, K, D, A, F of the form specified in Def-

nation 1.

Thus, a P specification provides a “scheme” for the definition of P systems
with programs defined over the sets V', K, D, A, and F. In particular, from
a modeling point of view, we can say that the alphabet V' of objects specifies
different “sorts” for the chemicals present inside a certain system, the alphabet
K of labels specifies different “types” for the membranes possibly present inside
a certain system, and the set D specifies the domain of interpretations for the
attributes and the corresponding functions.

A Modeling Approach Based on P Systems with Bounded Parallelism 53

A P system is then obtained by augmenting a certain P specification with an
initial configuration. In particular, we recall that the structure of a P system
is given by a hierarchical arrangement of some n > 1 membranes labeled in an
one-to-one manner with values in {1,2,...,n} [20]. However, since here we use
labels from a given alphabet to identify the “type” of a membrane, the value
from {1,2,...,n} assigned to a membrane is called the indez of the membrane;
the membrane structure is then said to be indexed by the values 1,2, ..., n.

Definition 3 (P system). A P system of degree n > 1 is a construct:
I = (S,/J,,Ml,MQ,...,Mn)

where S = (V,K,D,A,F,P) is a P specification with V,K, D, A, F, P as in
Definition 2, p a membrane structure containing n membranes indexed by the
values 1,2, ...,n, and, for all1 <i<mn, M; = (w;,;), with w; € V* the content
of membrane © and l; € K the label of membrane .

As usual, a P system of degree n > 1 is defined as consisting of a membrane
structure containing n membranes. Each membrane contains a multiset of objects
and gets assigned a label from the set K. This latter symbol is particularly useful
for retrieving from the given specification the set of programs which can be used
inside each membrane in the system. In other words, this label precisely identifies
the “type” of the membrane in terms of the rules which can be applied inside.

Most of the P system variants utilize a maximal parallel rewriting manner
[20]. This means, in each step, in each membrane, all the objects that can evolve
by means of some rules must evolve in parallel, with the only restriction that
the same occurrence of the same object cannot be used by more than one rule
at a time. That is, in each step, for each membrane, a maximal set of rules to
be applied is non-deterministically selected by making sure that no further rules
can be applied to the objects left inside the membranes. In this paper we will
introduce a mechanism to bound the number of applications of the rules and the
number of membranes that will evolve in a step. In this respect, the key issues
that need to be addressed in order to define a strategy for the application of the
rules in a P system are: a) how to select the next rule to be applied inside a given
membrane, b) how many different rules can be applied in parallel at the same
time inside the membrane, and ¢) how many different membranes can evolve in
parallel at the same time.

3 Parallelism of Type (k, q)

We formalize here the notion of a transition step in P systems evolving in a
(k, ¢)—parallel manner: in each step, at most & membranes evolve in parallel at
the same time and, inside each membrane, at most ¢ rules are applied in parallel
at the same time. Moreover, in a given step, if K membranes can evolve by means
of some rules, then exactly & membranes must evolve in parallel in that step;
inside each membrane, if ¢ rules can be applied, then exactly ¢ rules are applied

54 F. Bernardini et al.

in parallel inside that membrane. In other words, parallelism of type (k,q) is
assumed to be maximal and exhaustive with respect to k and gq.

Our formalization makes use of some concepts of the operational semantics
for P systems introduced in [5] and it is based on the explicit assignment of the
rules contained to the programs to the respective membranes; this is obtained
by assigning the index of a membrane to each object possibly present inside the
system.

Let I = (S,u, M1, Ms,....M,) with § = (V,K,D,A,F,P) and M; =
(wi, 1), for all 1 < i < n, be a P system as specified in Definition 3. The
following extra notions are associated to the P system IT:

— the indezed alphabet (of II) denoted by V is the set V = {a; | a € V,1 <
i<n};

— forall 1 <i <mn,andforallu € V*, the i-version of u is the multiset denoted
by u; € V such that, for all @ € V, for all 1 < j # i < n, |ule, = |ul, and
‘ua_j‘ = 07

— the set of membrane rules (of II) is the set of programs denoted by MR
and such that: MR = {ujv; — ujv; | (u[v] — ' [v'],0,f), € Pj =
upper(pu, 1) }, where upper(pu,) is a function returning for a given membrane
structure p, the membrane containing the region .

Thus, the indexed alphabet of IT is the alphabet of symbols from V' with attached
indexes of the membranes in the system. The i-version of a multiset u, with
1 <7< nandue V" is the multiset obtained by assigning the index 7 to all
the objects in u. The set M R explicitly identifies, for each membrane, the set of
rules which can be used inside that membrane by replacing the multisets in the
rules with the corresponding indexed versions. In particular, for all 1 < ¢ < n,
the set of rules which can be used inside membrane ¢ are the rules contained in
programs labeled by ;.

Moreover, for all 1 < i < n, a multiset of rules for membrane i, is a collection
of membrane rules 1,79, ..., 7, with k; > 0 and with these rules not necessarily
distinct, such that, for all 1 < h < k;, r;, is a membrane rule in M R of the form
ujv; — u; v, with v; # A. The size of R;, denoted by |R;|, is the number of rules
in Ri.

A multiset of rules in II is a collection of membranes rules of the form Ry,
R, ..., R, such that, for all 1 < i <n, R; is a multiset of rules for membrane i.

Then, a configuration of a P system is defined as being a multiset over the
indexed alphabet.

Definition 4 (Configuration). Let IT = (S, pi, My, Ms, ..., My;,) be a P system
as in Definition 3 where S = (V,K,D, A, F, P) and M; = (w;,1;), for all 1 <
i <n. A configuration (of IT) is a multiset C € V. The initial configuration (of
IT), denoted by Cy, is the multiset uq ug ... up such that, for all 1 < i <n, u; is
the i-version of w;.

Notice that, with the notions introduced in this section so far, we have essentially
reduced a P system of degree n > 1 to an equivalent one of degree 1 where the
objects have an index specifying the membrane which they are assigned to in

A Modeling Approach Based on P Systems with Bounded Parallelism 55

the original system. Thus, the behavior of such a system can be defined as being
a multiset rewriting system where the rules are selected according to a certain
strategy depending on the indexes assigned to the objects. In fact, according to
Definition 4, a configuration of a P system is just a multiset of objects and the
membrane rules are usual multiset rewriting rules.

To this aim, we need first to introduce the concepts of i-irreducibility and the
concept of (C, k, q)-consistency.

Definition 5 (i-irreducibility). Let IT = (S, u, M1, M, ..., M,) be a P sys-
tem as in Definition 8 where S = (V, K, D, A, F, P), and let 3 be a finite multiset
over V. Let MR be the set of membrane rules in IT. Given 1 < i <n, we say that
B is i-irreducible if, for all ujv; — ujvi € MP with v; # A\, we have 3 2 u; v;.

Thus, given a P system of degree n > 1, for all 1 < i < n, a multiset over the
indexed alphabet is i-irreducible if there are no more rules which can be applied
to the objects with index . In other words, if we interpret these objects as being
the content of membrane 7, this means that there are no more rules that can be
applied to the objects placed inside membrane 1.

Definition 6 ((C,k, g)-consistency). Let IT = (S, u, M1, Ms,..., M,) be a P
system as in Definition 8 where S = (V, K, D, A, F,P), and let R be a multiset
of rules in II. Let C € V* be a configuration of II, and let k,q # 0 be pos-
itive integers with k < n. We say that R is (C,k, q)-consistent if there exists
{i1,d2,...,ig} € {1,2,...,n} with g < k such that R can be written as a col-
lection of rules R, , R;,, ..., R;, with R;, a multiset of rules for membrane iy,
and

1. if g <k, then, for alli € ({1,2,...,n} \ {i1,92,...,44}), C is i-irreducible;

2. for alli € {i1,i2,... zk} if R; —ujlvl —>zj1w ufvpaszp then we
hcweC—aqulvl uj vP, for some x € V*;
3. for all i € {i1,i2,... ik}, |[Ri| < ¢q, and ifR =ujvf — zZjwy,. .., ufvp—>

zf w? with p < q, then C = acujl vl .. u oY, for some i-irreducible z € V*.

The notion of (C, k, g)-consistency precisely characterizes the multisets of rules
which can be applied to a given configuration C in accordance to the parallelism
of type (k, ¢). In fact, such a multiset of rules must contain a multiset of rules for
at most k distinct membranes; if there are not k¥ membranes that can evolve by
means of some rules, then a smaller but maximal number of membranes must be
selected (Condition 1 of Definition 6). The rules contained in the selected multiset
must be applicable to the objects currently contained inside each membrane
(Condition 2 of Definition 6). Moreover, for each membrane, at most ¢ rules
must be selected; if inside some membrane there are less than ¢ rules that can
be applied, then all of them must be applied (Condition 3 of Definition 6).
Therefore, in order to perform a (k, ¢)-parallel step in a given P system, it
is necessary to first select a multiset of rules R to be applied to the current
configuration C' such that R is (C, k, g)-consistent. In this respect, we assume
to have defined an algorithm to select programs and membranes Ay, 4 such that,

56 F. Bernardini et al.

given a configuration of a P system I and its set of programs, returns a multiset
of rules which is (C,k, ¢) consistent. In all the previous sections, this selection
has been defined as being non-deterministic but, in general, one may identify
other strategies which, in particular, should take into account the attributes
associated with the rules. Approaches in this direction are considered in [2], [21],
[22] where strategies for the selection of the rules are defined which depend on a
notion of rate of application of the rules, or on certain probabilities associated
with the rules. In the next section, we present one such strategy where the rules
to be applied in the next step are selected depending on a particular distribution
of probabilities computed step by step.

Here, we define the notion of a (k, ¢)-parallel step of computation by assuming
a generic algorithm for the selection of the rules.

Definition 7 ((k,q)-parallel step). Let IT = (S, u, My, Ms,..., M,) be a P
system as in Definition 8 where S = (V, K, D, A, F, P), and let Cy,Cs be con-
figurations of II. Let Ay 4 be an algorithm for the selection of the rules which is
able to return a (C1, k, q)-consistent multiset of rules in II. We say that Cy can
be obtained from Cq in a (k,q)-parallel step, denoted by C4 :>%c’q) Cs, if there
exists a multiset R of rules in II such that:

1. Ak,q(C’l,P) = R,‘
2. R=wuy vy, — zj, Wiy y ooy Ugp, Vi) —> Zj, Wi for some p > 0; -
3. C1 = wuj, v, ... uj, vy, and Cy = x 25, w;, ...z, w;, , for some x € V*.

If that is the case, then we write C} :>SI;"’) Cs.

Thus, a (k, g)-parallel step in a P system consists in the parallel application of a
(C, k, q)-consistent multiset of rules to a certain configuration C'. The multiset of
rules to be applied is supposed to be returned by a particular algorithm to select
membranes and programs, and this has to be done before every step depending
on the current configuration of the system.

Then, we introduce the notion of sequence of (k, ¢)-parallel steps and (k, q)-
parallel execution of a P system.

Definition 8 (sequence of (k, ¢)-parallel steps). Let IT = (S, u, M1, Ms,. . .,
M,,) be a P system as in Definition 3. A sequence of (k, ¢)-parallel steps in IT
s a sequence o such that

0'201,02,...,Ch

where, for all1 <i < h, C; is a configuration of II, and, if i # h, then C; :>SI;’Q)
Cit1. If that is the case, we say that o is a sequence of (k,q)-parallel steps in
II that starts from Cy and that C}, is obtained from C; in h — 1 steps; we also
write Cq :>%€’q)’h Ch.

Definition 9 ((k, ¢)-parallel execution). Let IT = (S, p, My, Ma, ..., M) be
a P system as in Definition 3. A (k,q)-parallel execution of II is a sequence of
(k, q)-parallel steps in IT which starts from the initial configuration of II.

A Modeling Approach Based on P Systems with Bounded Parallelism 57

Thus, we have characterized the behavior of P systems operating according to a
bounded parallelism where the number of membranes and the number of rules
which can be used in every step are overall bounded by some given constants.

Remark 2. From a computational point of view, the introduction of bounded
parallelism in membrane systems does not affect the fundamental universality
results concerning the computational power of different variants of P systems,
such as P systems with catalysts, with symport/antiport, with boundary rules,
etc. In fact, it is easy to see that, in all those cases, the simulation of counter
machines is achieved by means of P systems where the number of rules applied
in parallel in each step is actually overall bounded (e.g., see [7]). On the other
hand, it is shown in [8], [10] that P systems with catalysts operating in sequential
mode and P systems with symport/antiport operating in sequential mode (i.e.,
with parallelism of type (1,1)) are strictly less powerful than their corresponding
parallel versions. Moreover, one can also notice that, whenever k is equal to the
number of membranes in the system, our notion of parallelism of type (k,q)
coincides with the notion of g-Max-Parallelism introduced in [7].

4 An Algorithm to Select Membranes and Programs

We present an algorithm to select membranes and programs for P systems op-
erating with parallelism of type (1,1) (i.e., in sequential mode) where the next
membrane to evolve and the next rule to be applied inside this membrane is
randomly selected according to a certain distribution of probabilities. However,
with respect to Definition 3, the algorithm is here defined only for a restricted
model of P systems where rules are all of the forms:

ul] = [v],[v] = ul],[v] = [v] (2)

that is, there is a distinction between transformation rules and communication
rules, communication is only unidirectional, and there is no interaction between
the inside and the outside of a membrane.

Our strategy for selecting membranes and programs is based on Gillespie’s
algorithm [12]. This algorithm [12] provides an exact method for the stochastic
simulation of systems of bio-chemical reactions; the validity of the method is
rigorously proved and it has been already successfully used to simulate various
biochemical processes [17]. As well as this, Gillespie’s algorithm is used in the
implementation of stochastic m-calculus [4] and in its application to the modeling
of biological systems [23].

We follow a similar approach to associate a stochastic behavior to membrane
systems by considering P systems where each rule has associated a real constant
which defines its rate of application and which is used to compute the probability
of the rule to be applied in the next step in the same way as in Gillespie’s
algorithm. More precisely, we consider a class of P systems where, with respect
to Definition 3, the set of values is the set of non-negative real numbers denoted
by Rg , each programs contains a rule like (2), a real constant as an attribute,

58 F. Bernardini et al.

and a function to compute a probability depending on the value of this constant.
For short, such a P system is called PPR (i.e., a P systems with Probabilities
associated with the Rules).

In order to compute the probability values, we use, for all the programs, the
function ¢ such that ¢ : Ry x V* x V* — R with:

|
o) =ke T e 3)
oLl (ol fula)
forall k>0, u,a € V* and u C «; ¢(k,u,a) =0 for all k > 0, u,a € V* and
ulZ a.

That is, given a rule [v] — wu[], or a rule [v] — [v'] with an associated
attribute k, and given a multiset o J v, expression (3) returns the number of
different ways of choosing |v|, occurrences of a from the multiset «, for all a
such that |a] > 0. In particular, the multiset « is supposed to be the multiset
of objects placed inside the membrane where the rule is going to be used. In a
similar way, given a rule u[] — [v] with attribute k, expression (3) is used to
compute a probability value for this rule by considering the multiset v and the
multiset of objects placed in the outside region.

Remark 8. The function given by expression (3) is already used in [22] to com-
pute probability values for rules. However, this is done in the context of a different
algorithm to select rules and programs which is not directly related to Gillespie’s
algorithm.

Next, we provide a formal definition for the notion of a PPR.

Definition 10 (PPR). A PPR of degree n > 1 is a construct
I = (V;KaRE)FuAvqvavﬂaMlvMQﬂ"'7Mn)
where:

- (V,K, RS‘, A, ¢, P) is a P specification with ¢ the function given by expres-
sion (3), and all the programs in P having the form {(r k,¢); for r a rule
like (2), and k € A;

— u, and My, My, ..., M, are as in Definition 3.

Remark 4. The function ¢ is used to compute the probabilities associated with
the rules in a slightly different form with respect to the type of functions consid-
ered in Definition 1: only two multisets instead of four are used by the function
¢. This is because we are restricted to rules of the forms u[] — [v], [v] — u[],
[v] — [v'] containing only one multiset on the left side. However, our approach
could be easily generalized to the case of rules of the form u[v] — «’ [v'] with
u,v # A by considering a function ¢’ such that

(b/(kv Uy Vy Wouts win) = ¢(k7 u, wout) ' ¢(17 v, wzn)

where wyyt, w;n denote the multisets of objects placed respectively inside and
outside the membrane where the rule is going to be applied.

A Modeling Approach Based on P Systems with Bounded Parallelism 59

Let IT be a PPR, and let C' be a configuration of IT. For all 1 < ¢ < n, we define
the multiset O; € V* as being the multiset of objects such that |O;|, = |Cla;,
for all a € V (i.e., O; is the multiset of objects contained inside membrane ¢ in
the configuration C').

We associate to membrane ¢, with 1 < ¢ < n, a set TR; containing all the
triples:

— (t,v; — wuj,pe), with ([v] — u[],k,¢)1,, I; the label of membrane i, j =
upper(u, i), and p, = d(k, v, 0;);

— (t',v; = v}, p), with ([v] — [V'], k, &)1, I; the label of membrane i, and
P = ¢(k7v702)7

= (", ug — vj,per), with (u[] — [v], kn, @)1, © = upper(p, j), I; the label of
membrane j, and pyr = ¢(k, u, O;).

Thus, for each membrane 4, the set T'R; is supposed to contain all the rules that
can be used inside membrane ¢ with these rules having associated a correspond-
ing value of probability. In particular, if a certain rule is not applicable inside
membrane 4, then the probability of this rule to be applied turns to be equal to
0. Moreover, notice that rules which send a multiset inside a certain membrane
are considered as rules to be used inside the surrounding region.

The following algorithm is then defined to select membranes and programs
for P systems with parallelism of type (1,1).

First, for each membrane ¢, we compute the index of the next program to be
used inside membrane i and its waiting time by using the classical Gillespie’s
algorithm:

1. calculate ag =) p;, for all (j,7,p;) € TR;;
2. generate two random numbers r; and ro uniformly distributed over the unit
interval (0, 1);

1
3. calculate the waiting time for the next reaction as 7, = = In();
ao T1
Jj—1 J
4. take the index j, of the program such that Zpk < reap < Zpk;
k=1 k=1

5. return the triple (7, 7, 1).

Notice that the larger the real constant associated with a rule and the number of
occurrences of the objects placed on the left-side of the rule inside a membrane
are, the greater the chance that the rule will be applied in the next step of
the simulation. There is no constant time-step in the simulation. The time-step
is determined in every iteration and it takes different values depending on the
configuration of the system.

Next, a step of application of the rules is simulated by using the following
procedure:

e Initialization
o set time of the simulation ¢ = 0;
o for each membrane ¢ in © compute a triple (7;, 7, 7) by using the procedure
described above; construct a list containing all such triples;
o sort the list of triple (7, j,4) according to 7;;

60 F. Bernardini et al.

e Iteration

o extract the first triple, (7,,,j, m) from the list;

o set time of the simulation ¢t = ¢ + 7,,;

o update the waiting time for the rest of the triples in the list by subtract-
Ing 73

o apply the rule contained in the program j only once changing the number
of objects in the membranes affected by the application of the rule;

o for each membrane m’ affected by the application of the rule remove the
corresponding triple (77 ., j',m’) from the list;

o for each membrane m’ affected by the application of the rule j re-run the
Gillespie algorithm for the new context in m’ to obtain (777, 5", m’), the
next program j”, to be used inside membrane m’ and its waiting time

1"

)

o add the new triples (7//,,7",m’) to the list and sort this list according
to each waiting time and iterate the process.
e Termination
o Terminate simulation when time of the simulation ¢ reaches or exceeds
a preset maximal time of simulation, or no more rules can be applied to

the objects left inside the membranes.

1"

Therefore, in this approach, it is the waiting time computed by the Gillespie’s
algorithm to be used to select the membrane which is allowed to evolve in the
next step of computation. Specifically, in each step, the membrane associated to
the rule with the same minimal waiting time is selected to evolve by means of
this rule. If there are more than one rule with the same waiting time, then we
assume one of them to be randomly selected to be used in the next step.

Moreover, since the application of a rule can affect more than one membrane
at the same time (e.g., some objects may be moved from one place to another),
we need to reconsider a new rule for each one of these membranes by taking into
account the new distribution of objects inside them.

Remark 5. The use of a variable time-unit for each step does not affect the
semantics of our model; in each step, a single rule at a time is applied inside a
specific membrane. This means the behavior of the systems is still synchronous
although each application of a rule has associated a different time-unit. In fact,
the waiting time is mainly used as a parameter necessary to determine the rule
to be applied in the next step of computation.

Remark 6. The current algorithm brings some improvements with respect to the
notion of step introduced in Definition 7. In fact, in the iteration phase, we need
not to recompute all the probabilities associated with each program applicable
inside each membrane, but we can do that only for those membranes which are
actually affected by the last application of a program. That is so because the
value of the probabilities associated with the other rules remain unchanged.

Remark 7. The use of the waiting time parameters leads to selecting a membrane
using the minimum waiting time principle. Getting rid of this parameter will lead

A Modeling Approach Based on P Systems with Bounded Parallelism 61

to a variant of this algorithm that is associated to an (n, 1)—parallel behavior of
the system, where n is the total number of membranes. Indeed, in this case there
is no way to distinguish between membranes and all of them will be selected.

5 A Case-Study: Bacterial Quorum Sensing

We present an application of membrane systems to the modeling of quorum
sensing in bacteria (QS, for short).

The QS mechanism is a communication strategy based on diffusible signals
which kick-in under high cellular density. Bacteria use this mechanism to obtain
a population-wide coordination of infection, invasion, and evasion of a host’s
defence. We refer to [13], [14], [28] for further details about the biology of QS.
Moreover, a comprehensive bibliography of QS-related research can be found at
the web page [30] maintained by the Nottingham Quorum Sensing Group.

QS bacteria produce and release chemical signal molecules, called autoin-
ducers, whose external concentration increases as a function of increasing cell-
population density. Bacteria detect the accumulation of a minimal threshold
stimulatory concentration of these autoinducers and alter their gene expression,
and therefore their behavior in response to the variation of the concentration
of autoinducers. Using these signal-response systems, bacteria synchronize par-
ticular behaviors on a population-wide scale and thus function as multicellular
organisms.

The first described quorum-sensing system is that of the bioluminescent ma-
rine bacterium Vibrio fischeri, and it is considered the basic paradigm for quorum
sensing in most (gram-negative) bacteria [18]. Vibrio fischeri colonize the light
organ of the Hawaiian squid Euprymna scolopes. In this organ, the bacteria grow
to high cell density and induce the expression of genes for bioluminescence. The
squid uses the light provided by the bacteria for counter-illumination to mask its
shadow and avoid predation. The bacteria benefit because the light organ is rich
in nutrients and allow proliferation in numbers unachievable in seawater. Two
proteins, named LuxI and LuxR, control the expression of the luciferase operon
(luxICDABE) required for light production. LuxI is the autoinducer synthase,
which produces the autoinducer 30C6-homoserine lactone (OHHL, for short),
and LuxR acts as a receptor for these autoinducers. OHHL freely diffuses in
and out of the cell and increases in concentration in correspondence of the in-
creasing of the cell density. When this concentration reaches a critical threshold,
OHHL binds to LuxR and this complex activates the transcription of the operon
encoding luciferase. As well as this, the LuxR-OHHL complex also induces the
expression of luxI because it is encoded in the luciferase operon. This regulatory
configuration floods the environment with the signal. This creates a positive
feedback loop that causes the entire population to switch into “quorum-sensing
mode”, and produce light; in this case, it is also said that the population is
quorated.

QS systems have then been identified in other bacterial populations, for in-
stance, Pseudomonas aeruginosa, Vibrio harvey:i, and Bacillus subtillis, where

62 F. Bernardini et al.

the existence of quorum-sensing networks relying on multiple signalling circuits
acting synergistically has also been observed.

5.1 A P System Model of QS

A P system model for the QS system of Vibrio fischeri is here defined where
a colony of such bacteria is represented by means of a membrane structure
consisting of a number of elementary membranes, each one of them representing
a bacterium, included in an unique membrane (the skin) representing a common
shared environment. In particular, each membrane will contain a set of programs
modeling the QS regulatory circuits responsible for the production of light.

To this aim, we use: the symbol OHHL to denote the autoinducer, the
symbol LuzR to denote the receptor for the autoinducer OH H L, the symbol
LuzR-OHHL to denote the complex formed by the binding of the autoinducer
OHHL to the receptor LuxR, the symbol LuxBox to denote the luciferase
operon in its down-regulated state (i.e., when it is not active for the production
of light), and the symbol LuxBox-Lux R-OH H L to denote the luciferase operon
in its up-regulated state (i.e., when it is active for the production of light). Then,
we define the following P signature for QS in Vibrio fischersi.

BS(A) = (V,K,R{,$, A, P)

where A = {kl, k‘g, k4, kg, k‘5, k6, k7, k‘s, k‘g, klo,]4111, k‘12, k‘lg, k14} is a set of real
constants, V. = {OHHL, LuzR, LuzR-OHHL, LuxBox, Lux Box- Lux R-OH
HL}, K = {e,b}, ¢ is the function given by expression 2, and P is finite set
containing all the following programs:

— ([LuxzBox| — [LuzBox LuzR], k1, ®)p,
([LuxzBox] — [LuxBox OHHL], k2,)p
(at low cell density the autoinducer OHHL and the receptor LuxR are
produced at a basal rate);

— ([OHHL LuzR) — [LuzR-OHHL], k3,),
([LuzR-OHHL]| — [OHHL LuzR], k4, ®)p
(the autoinducer OH HL and the receptor LuxR bind together to form the
complex LuxR-OH H L which, in turn, dissociates in its components);

— ([LuzR-OHHL LuxBox] — | LuxBox-Lux R-OHHL], ks, $)s,
([LuzBoz-LurR-OHHL)] — [Luz R-OHHL LuxBozx |, ke,)
(the complex LuxzR-OH HL binds to the region of DNA responsible for the
production of light; such a complex can also dissociate from that region by
returning the luciferase operon to a down-regulated state);

— ([LuzBoz-Luz R-OHHL| — [Luz Box-Lur R-OHHL OHHL], k7, $)s,
([LuzBoz-LuzR-OHHL]| — [Lux Box-Lux R-OHHL LuxR], ks, ¢)»
(the binding of the complex to the corresponding region of DNA produces an
increase in the production of the autoinducer OH H L and in the production
of the receptor LuzR);

A Modeling Approach Based on P Systems with Bounded Parallelism 63

([OHHL) — OHHL]], ko, ¢)s

(the autoinducer OH H L freely diffuses outside the bacterium and accumu-
lates in the environment);

<[OHHL] - []7k107¢>b7

< [LU‘TR] - Ha k11, ¢>b7

([LuzR-OHHL] — [], k11, 9)»

(the autoinducer OH H L, the receptor Luz R and the complex Luz R-OHHL
undergo a process of degradation inside the bacterium);

(OHHL[] — [OHHL], k12,)

(the autoinducer OH H L diffuse back from the environment into the bac-
terium);

([OHHL] = [], k13, &)e

(the autoinducer OH HL is degraded in the environment).

Thus, we have identified 14 rules which model the main transformations in-
volved in the QS system of Vibrio fischeri. Notice that the signature BS is
parametric with respect to the particular constants associated with the rules.

Next, we define a parametric PPR system II(n, A) to represent a colony of
n > 1 bacteria interacting by means of the QS system described by the afore-
mentioned rules. Specifically, we have

II(n,A) = (BS(A),u(n), Mq,..., My, Myi1)
where:

— A={ky, ko, ka, ks, ks, ke, k7, ks, ko, k10, k11, k12, k13, k14 };
—pm) =lorri]i - [n]nlnsrs

— M; = (LuxBox,b), for all 1 < i < n;

Moy = (M e).

Thus, in the initial configuration, we assume all the bacteria in the colony to
contain only one occurrence of the object LuxBox representing the portion of
DNA responsible for the production of the autoinducer OH H L and the recep-
tor Lux R; the environment is instead supposed to be initially empty. Moreover,
notice that, by having the notion of P specification, we can represent an arbi-
trary large colony in a very compact way by avoiding repeating the same set of
programs for every membrane in the system.

Simulation results have been presented under different formalisms and show
the same behavior of the colony.

6 Discussion

As we have seen, there is a growing interest in using P systems for modeling bio-
logical systems. This often requires the introduction into the membrane system
model of some extra features especially when the quantitative aspects character-
izing the “reality” of the biological phenomenon to be modeled are considered.

64 F. Bernardini et al.

Here we have addressed these issues by specifically introducing the notion of
a program consisting of a rule with a finite set of attributes and a function from
a given set (Definition 1). We have shown how attributes and functions can be
used to define P system models for bio-chemical systems consisting of a number
of bio-chemical reactions distributed across various compartments of the system.
A precise strategy for the application of the rules has also been defined for this
class of P systems which makes possible to associate a stochastic behavior to
such P systems. Our approach is based on the well-known Gillespie’s algorithm
and it is developed alongside the work done in [2], [21], [22] where alternative
strategies for the application of the rules are defined.

Acknowledgements

The first author’s research is supported by NWO, Organisation for Scientific
Research of The Netherlands, project 635.100.006 “VIEWS”.

The second and fourth authors are supported by Ministerio de Ciencia y
Tecnologia of Spain, by Plan Nacional de I+D+I (TIN2005-09345-C04-01), cofi-
nanced by FEDER funds, by Junta de Andalucia, by project of Excellence TIC
581, and by a FPU fellowship from the Ministerio de Ciencia y Tecnologia of
Spain.

References

1. Bernardini, F., Gheorghe, M. (2004). Population P Systems. J. UCS 10,(5), 509—
539.

2. Bianco, L., Fontana, F., Manca, V. (2006). P Systems with Reaction Maps. Inter-
national Journal of Foundations of Computer Science, 17, (1), 27-48.

3. Calder, M., Vyshemirsky, V., Gilbert, D, Orton, R (2006). Analysis of Signalling
Pathways using Continuous Time Markov Chains. Transactions on Computational
Systems Biology, to appear.

4. Cardelli, L., Philips, A.(2004). A Correct Abstract Machine for the Stochastic
Pi-calculus. Electronical Notes in Theoretical Computer Science, to appear.

5. Ciobanu G., Andrei, O., Lucanu D. (2006). Structural Operational Semantics of P
Systems, WMC6, LNCS 3850, 31-48.

6. Collado-Vides, J. (1992). Grammatical Models of the Regulation of Gene Expres-
sion, Proc. of National Academy of Science, 89, 9405-9409.

7. Dang, Z., Ibarra, O.H., Li, C., Gaoyan, X. (2006). Decidability of Model-Checking
P Systems. Journal of Automata, Languages and Combinatorics,, to appear.

8. Dang, Z., Ibarra, O.H. (2005). On One-membrane P systems Operating in Sequen-
tial Mode. Int. J. Found. Comput. Sci. 16, (5), 867-881.

9. Duan, Z., Holcombe, M., Bell, A. (2000). A Logic for Biological System, Biosystems,
53, 93-155.

10. Freund, R. (2004). Asynchronous P systems and P systems working in Sequential
Mode, WMC5, LNCS 3365, 36-62.

11. Gillespie, D.T. (1976). A General Method for Numerically Simulating the
Stochastic Time Evolution of Coupled Chemical Reactions. J Comput Physics,
22, 403-434.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

A Modeling Approach Based on P Systems with Bounded Parallelism 65

Gillespie, D.T. (1977). Exact Stochastic Simulation of Coupled Chemical Reac-
tions. The Journal of Physical Chemistry, 81, (25), 2340-2361.

Hardie, K.R., Williams, P., Winzer, K.(2002). Bacterial cell-to-cell communication:
sorry, can’t talk now, gone to lunch. Current Opinion in Microbiology, 5, 216—222.
Fargerstron, T., James, G., James, S., Kjelleberg, S., Nilsson, P. (2000). Lumines-
cence Control in the Marine Bacterium Vibrio fischeri: An Analysis of the Dynamics
of lux Regulation. J. Mol. Biol. 296, 1127-1137.

Kam, N., Cohen, I.R., Harel, D. (2001). The Immune System as a Reactive Systems:
Modelling T Cell Activation with Statecharts, The Weizmann Institute of Science,
Israel.

Matsuno, H., Doi, A., Nagasaki, M., Miyano, S. Hybrid (2000). Petri Net Repre-
sentation of Gene Regulatory Network, Pacific Symposium on Biocompting, World
Scientific, 338—-349.

Meng, T.C., Somani S., Dhar, P. (2004). Modelling and Simulation of Biological
Systems with Stochasticity. In Silico Biology, 4, (0024), 137-158.

Nealson, K.H., Hastings, J.W. (1979). Bacterial Bioluminescence: Its Control and
Ecological Significance, Microbiology Review, 43, 496-518.

Paun, Gh. (2000). Computing with Membranes, Journal of Computer and System
Sciences, 61, (1), 108 — 143.

Paun, Gh. (2002). Membrane Computing. An Introduction, Springer, Berlin.
Pérez-Jiménez, M.J., Romero-Campero, F.J. (2006). P Systems, a New Computa-
tionl Modelling Tool for Systems Biology, Transactions on Computational Systems
Biology VI, LNBI, 4220, 176-197.

Pescini, D., Besozzi, D., Mauri, G., Zandron, C. (2006). Dynamical probabilistic
P systems, International Journal of Foundations of Computer Science, 17, (1),
183-195.

Priami, C., Regev, A., Shapiro, E., Silverman, W. (2001). Application of a Stochas-
tic Name-Passing Calculus to Representation and Simulation of Molecular Pro-
cesses, Information Processing Letters 80, 25-31.

Regev, A., Shapiro, E. (2004) The m-calculus as an abstraction for biomolecular
systems. In Gabriel Ciobanu and Grzegorz Rozenberg, editors, Modelling in Molec-
ular Biology, Springer, 219-266.

Segel, L.H. (1976). Biochemical Calculations: How to Solve Mathematical Problems
in General Biochemistry, John Wiley and Sons, 2nd edition.

Till, J.E., McCulloch, F. Siminovitch, L. (1964). A Stochastic Model of Stem Cell
Proliferation based on the Growth of Spleen Colony-Forming Cells, Proc. National
Academy of Science USA, 51, 117-128.

Walker, D., Holcombe, M., Southgate, J., McNeil, S., Smalwood, R. (2004). The
Epitheliome: Agent-Based Modelling of The Social Behaviour of Cells, Biosystems,
76, (1-3), 89-100.

Waters, C.M., Bassler, B.L. (2005). Quorum Sensing: Cell-to-Cell Communication
in Bacteria. Annu. Rev. Cell. Dev. Biol. 21, 319-346.

The P Systems Web Site: http://psystems.disco.unimib.it

Nottingham Quorum Sensing Web Site http://www.nottingham.ac.uk/quorum/

Synchrony and Asynchrony
in Membrane Systems

Jetty Kleijn! and Maciej Koutny?

1 LIACS, Leiden University
P.O.Box 9512, NL-2300 RA Leiden, The Netherlands
kleijn@liacs.nl
2 School of Computing Science, University of Newcastle
Newcastle upon Tyne, NE1 7TRU, United Kingdom
maciej.koutny@ncl.ac.uk

Abstract. We consider synchrony and asynchrony in the behavior of
various models of membrane systems, which may differ in the way indi-
vidual reactions are defined as well as in the way multisets of these reac-
tions can be executed in a single computational step. We concentrate on
the properties of ongoing computations, including the unbounded ones.
Our focus is on the properties of system states involved in such com-
putations as well as on concurrency and causality relationships between
executed reactions. This should be contrasted with the approach which
investigates different notions of ‘results’ produced through halting com-
putations of membrane systems. As a formal behavioral model we use
Petri nets and their processes which are very well suited to capture the
notion of an execution in a concurrent context. We continue our earlier
work reported in [15], where a systematic and structural link has been
established between a basic class of membrane systems and Petri nets.
Here, we look at some natural extensions of this basic class of membrane
systems and investigate the ways in which they can be represented within
the behavioral model provided by Petri nets.

1 Introduction

Inspired by the way living cells are divided by membranes into compartments
where biochemical reactions may take place, membrane systems (also known as
P systems) have become a prominent new computational model [1,21,23,24]. In
a nutshell, a reaction transforms multisets of molecules (or objects) present in
the compartment into new molecules, possibly transferring some to neighboring
compartments and the environment. Consequently, all aspects of the dynamic
behavior of membrane systems are determined by the reaction or evolution rules
in each compartment and by the way in which these rules occur. The resulting
transformations (or computation steps) take place starting from an initial con-
figuration (a distribution of objects). Furthermore, a notion of a successful (or
halting) computation with its output is defined [23,24]. Different types of mem-
brane systems have been considered, depending on the form of the rules and how
they are applied, and on input/output definitions. In fact, studies in the field of

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 66-85, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Synchrony and Asynchrony in Membrane Systems 67

membrane systems are often concerned with investigating the possible outcomes
of the computations, i.e., the computational power of the various models. The
aim of our work, however, is different in that we are interested in describing what
is actually going on during an execution of a membrane system; alternatively,
one might say that we are interested in computations rather than computability.
Thus, we focus on possible system states (configurations) occurring in ongoing
computations as well as on the concurrency and causality relationships between
executed reaction rules. This emphasis on possible behaviors (runs) rather than
input/output relations, further implies that all possible computations need to
be considered, including non-successful and still ongoing (even unbounded) ones
(which are also relevant from a biological/cell point of view).

There are basically two distinguishing features of any model of membrane
systems when one is interested in the structural properties of their executions
rather than in successful computations or the results produced. The first is the
definition of individual reactions; in the simplest case, a reaction is supposed only
to consume and produce multisets of molecules, but in more elaborate models,
its execution can, e.g., be conditional or affect the structure of the cell. The
second is the degree of synchrony present in a single computation step; in the
extreme case, commonly considered in the theory of membrane systems, in a
single step the system is transformed by a maximally concurrent execution of
reaction rules (no more rules in whatever compartment could have been applied).
In this paper, we will consider different kinds of synchrony as well as different
types of reaction rules, and we will indicate how Petri nets (see, e.g., [10,28])
can be used to capture the structural properties of the computations of varying
models of membrane systems.

Petri nets are bipartite directed graphs consisting of two kinds of nodes, called
places and transitions. Places indicate the local availability of resources (repre-
sented by so-called tokens) and thus can be used to represent objects in specific
compartments. Transitions are actions which can occur depending on local con-
ditions related to the availability of resources and they can be used to represent
reaction rules associated with compartments. When a transition occurs it con-
sumes resources from its input places and produces items in its output places,
thus mimicking the effect of a reaction rule (see Figure 2). Since multiset calculus
is basic for membrane systems and also for computing the token distribution in
Petri nets [7], some connections between the two models were already established
including interpretations of reaction rules of membrane systems using Petri net
transitions (e.g., [9,27]). Petri nets are a fundamental modeling tool for rela-
tions between occurrences of actions, moreover providing both a language and
a method for behavioral analysis through so-called processes to formalize the
concept of a concurrent run and with a corresponding theory of labeled partial
orders. Note that models such as process algebras do not yield themselves as
easily to the modeling of membrane systems since the structure of the latter is
relatively simple, and the main advantage of the former, viz. compositionality
in system specification and execution, is not needed.

68 J. Kleijn and M. Koutny

This paper builds on previous work [15,16], where it has been demonstrated
that a structural relationship between Petri nets and membrane systems can be
established at the system level. A formal translation has been given from a basic
class of membrane systems into a class of Petri nets. The direct correspondence
of Petri net transitions together with their input and output places to evolu-
tion rules is the key property which makes the translation suitable for dealing
with structural aspects of the behavior of membrane systems. It implies that the
causality and concurrency relations between applications of reaction rules are
preserved in the relationships between occurrences of the corresponding transi-
tions. Thus also the synchrony in computation steps corresponds to potentially
simultaneously occurring transitions. As shown in [15], in case the membrane
system evolves in a synchronous fashion (i.e., with a maximally concurrent exe-
cution of reaction rules in each computation step), its computations are faithfully
reflected in the maximally concurrent step sequence semantics of its Petri net.
In Place/Transition nets with localities (or PTL-nets), the specific class of Petri
nets introduced in [15], each transition moreover belongs to a location, similar
to the distribution of the reaction rules over the compartments in a membrane
system. Since locality aspects of the resources consumed and produced by tran-
sitions is explicitly supported by their underlying graph structure, this locality
information is not relevant for the maximal concurrency semantics of a Petri net.
However, transitions with associated localities can be used to restrict synchrony
to certain locations: in each step, and for each locality actively involved in that
step, as many transitions belonging to this locality as possible are executed. Thus
the PTL-net model and its locally maximal concurrency semantics facilitate the
investigation of membrane systems working under the natural assumption that
synchrony is restricted to individual compartments. Observe that this semantics
leads to a more general model of membrane systems: maximal concurrency can
be studied in the framework of PTL-nets with only one locality. PTL-nets with
the locally maximal concurrency semantics provide a formal framework for the
modeling and analysis of so-called ‘globally asynchronous locally synchronous’,
or GALS, systems. Other examples of such systems occur, e.g., in hardware
design (see [8,30]) when computations take place in synchronous clusters with
asynchronous data exchange.

In general, a step sequence semantics for Petri nets provides important in-
sights into concurrency aspects of a system when executed. Such semantics,
however, are based on ordered sequences of steps which may obscure the true
causal relationships between occurrences of transitions since not all ordering
is a consequence of causality. Still information on causal relationships is often
highly relevant for system design and analysis. As was recognized a long time ago
(see [20]), Petri nets support a formal approach where this information is read-
ily available. Runs (as given, e.g., by step sequences) are unfolded (unraveling
their steps) into structures which explicitly represent causality and concurrency.
For this purpose, labeled occurrence nets, called processes are used (see, e.g.,
[4,5,12,29]). The standard process semantics of Place/Transition nets (based on
arbitrary steps) does not work in the PTL case due to lack of information on

Synchrony and Asynchrony in Membrane Systems 69

potential executability of transitions relevant for the local maximality of exe-
cuted steps. To cope with this problem, in [15] the occurrence nets generated by
PTL-nets are adapted leading to the notion of barb-processes formally defined
and investigated in [16]. In [15,16] however, only a very basic class of membrane
systems is considered with simple evolution rules and evolving in a (locally)
synchronous fashion. In this paper, we will attempt to establish a similar set-
up for other existing, more sophisticated, variants and extensions of membrane
systems. For each of these variants, we intend to define a suitable (extension of
the) PTL-net model with a proper semantics. Obviously, we aim at retaining the
direct correspondence between (occurrences of) transitions and (application of)
evolution rules in order to guarantee that (local) synchrony and asynchrony in
the membrane systems have corresponding interpretations in the PTL-net. Note
that this work is a preliminary investigation, and full technical details are left
to forthcoming papers.

2 Preliminaries

In this paper, a multiset (over a set X) is a function m : X — N. By N¥ we denote
the set of multisets over X . For two multisets m and m’ over X, we denote m < m’
if m(z) < m’(z) for all z € X. Moreover, a subset of X may be viewed through
its characteristic function as a multiset over X, and for a multiset m we denote
z € m if m(z) > 1. Multiset m over X is finite if there are finitely many z € X
such that m(z) > 1; the cardinality of m is then defined as |m| = Y owex M(z).
The sum of two multisets m and m’” over X is given by (m+m’)(z) = m(x)+m’(z),
and the difference by (m—m’)(z) = max{0, m(z)—m’(x)}, i.e., as a total function
extending set difference. The multiplication of m by a natural number n is given
by (n-m)(z) = n-m(z). Moreover, any finite sum m; + - - - + m; will also be
denoted as 3 ;cq gy M

2.1 Basic Membrane Systems

We first consider the most basic definition of membrane systems. A (basic) mem-
brane system (of degree m > 1) [21,24] is a construct

o=, pw?,. .., wl Ri,...,Rn),
where:

— V is a finite alphabet consisting of (names of) objects;

— i is a membrane structure given by a rooted tree with m nodes, represent-
ing the membranes — we assume that the nodes are given as the integers
1,...,m, and (¢,j) € p will mean that there is an edge from ¢ (parent) to j
(child) in the tree of y;

— each w? is a multiset of objects initially associated with membrane i

70 J. Kleijn and M. Koutny

— each R; is a finite set of reaction rules (or evolution rules) r associated with
membrane 4, of the form [hs” — rhs”, where [hs” — the left hand side of r
— is a non-empty multiset over V', and rhs” — its right hand side — is a
possibly empty multiset over

VU{aou |a € VU {am, |a €V A(i,5) € u}.

The nodes of a membrane structure represent membranes which in their turn
determine the compartments: node j represents membrane m; which defines c;
as the compartment enclosed by m; and in-between m; and its children if any. In
the above, symbols a;,,; represent objects a that will be sent to (the compartment
defined by) the child node j and a,,; stands for an a that will be sent out to the
parent’s compartment. We assume that no evolution rule r associated with the
root of the membrane structure uses any aqy: in rhs”.

A membrane system II as above evolves from configuration to configuration
as a consequence of the application of (multisets of) evolution rules in each

compartment. Formally, a configuration is a tuple C' = (wy, . .., w,,) where each
w; is a multiset of object names; we define a vector multi-rule R as an element
of Nf1 x ... x N®n_ Given a vector multi-rule R = (Ry,...,R,,), we use as

additional notation lhs; = }_ cp. R;(r) - lhs" for the multiset of all objects in
the left hand sides of the rules in ﬁz and, similarly, rhs; =3 . R, }A%z(r) -rhs” is
the multiset of all — possibly indexed — objects in the right hand sides.

We now come to a point where we need to make precise the execution seman-
tics of the basic membrane system model. As we already mentioned, it can be
defined in a number of ways, depending on the balance between synchrony and
asynchrony in the allowed behaviors. We will consider four kinds of execution
semantics that have been investigated in the area of membrane systems, i.e.,
the common mazimal parallelism, the locally mazimal parallelism from [15,16],
minimal parallelism [11], and free parallelism [25].

First, we consider free parallelism by which any combination of reaction
rules can be executed as a synchronous step provided that enough resources

are available. More precisely, configuration C' = (wy, ..., wy,) free-evolves into
configuration C' = (wf,...,w,,) by a vector multi-rule R = (Ry,...,Rp), or

C :R>free C’, if for every 1 < i < m, lhs; < w; and, for each object a € V,

w;(a) = w;(a) — lhsi(a) + rhsi(a) + rhsparent(s) (@in,) + Z rhs;j(Gout)
(i,5)Ep

where parent(i) is the father membrane of ¢ unless 7 is the root in which case
parent(i) is undefined and rhsperent(i)(@in,) is omitted. Note that any j in the
last term must be a child of 7. By the first condition, the configuration C' has
in each membrane ¢ enough occurrences of objects for the application of the
multiset of evolution rules R;, and the second condition describes the effect of
the application of the rules in R.

The other three execution semantics can be seen as restrictions of the free
parallelism paradigm. Given C :R>fTee C’ as above, we say that C:

Synchrony and Asynchrony in Membrane Systems 71

— min-evolves into C' (or C L. C')if |[Ry| 4 -+ + |[Rm| = 1;

— max-evolves into C' (or C :R>mm (") if there is no ¢ and rule r in R; such
that lhs” + lhs; < w;; and

— Imaz-evolves into C’ (or C :anaw C") if there is no ¢ and rule r in R; such
that [hs” + lhs; < w; and |§Z| > 1.

A free/min/max/Ilmax-computation of IT is then defined to be a sequence of
free/min/max/Imax-evolutions starting from Cy = (w?, ..., w9,), the initial con-
figuration of II.

2.2 Petri Nets with Localities

We now recall the key notions of the standard Petri net model. A PT-net is
a tuple N = (P, T, W, My) such that P and T are finite disjoint sets and W :
(T'x P)U(PxT)— Nand My : P — N are multisets. The elements of P
and T are respectively the places and transitions of N, W is the weight function
of N, and Mj is its initial marking. In diagrams, places are drawn as circles,
and transitions as rectangles. If W(z,y) > 1 for some (z,y) € (T x P)U (P x
T), then (x,y) is an arc leading from = to y. As usual, arcs are annotated
with their weight if this is 2 or more. We assume that, for every t € T, there
is a place p such that W(p,t) > 1. Places represent local states (resources),
while markings are multisets of places (depicted by the corresponding number
of tokens, small black dots, in each place) representing the global states of a
PT-net. Transitions represent actions which may occur at a given marking and
then lead to a new marking (the weight function specifies what resources are
consumed and produced during the execution of such actions).

The pre- and post-multiset of a transition ¢ € T are multisets of places given,
for all p € P, by: PREx(t)(p) = W(p,t) and POSTy(t)(p) = W(t,p). Both
notations extend to multisets of transitions U:

PREN(U) =) U(t)-PREN(1) and PoOsTy(U) =) U(t) - POSTN(t) .
teU teU

In order to represent the compartmentalization of membrane systems, one
can add the notion of located transitions. In the proposed way of specifying
locality for the transitions in a PT-net, each transition belongs to a fixed unique
locality. The exact mechanism for achieving this is to introduce a partition of
the set of all transitions, using a locality mapping ©. Intuitively, two transitions
for which ® returns the same value will be co-located. Consider the PTL-net
depicted in Figure 1. Transitions a and c are assigned one locality, whereas
transitions t and u are assigned another locality. This PTL-net is a model of a
producer/consumer system which reflects the view that producers operate away
(at location 1) from consumers (location 2).

A PT- net with localities (or PTL-net) is a tuple NL = (P, T, W, My,®), where

UND(NL) = (P, T, W, M) is the underlying PT-net and ® : T — N is a location
mapping for the transition set 7. In the diagrams of PTL-nets, transitions are

72 J. Kleijn and M. Koutny

O o]

Fig. 1. PTL-net of the one-producer/two-consumers system

shaded rectangles with the locality being shown in the middle. Note that 2 is
merely a labeling of transitions, it is not meant as a renaming (as used later for
occurrence nets).

We now can introduce execution semantics for the PTL-net which closely
reflect the different degrees of synchrony in basic membrane systems.

A step is a multiset of transitions, U : T — N. It is free-enabled at a marking
M (or M[U)¢ree) if M > PREN(U). Thus, in order for U to be free-enabled at
M, for each place p, the number of tokens in p under M should at least be equal
to the total number of tokens that are needed as an input to U, respecting the
weights of the input arcs. We further say that U is:

— min-enabled at M (or M[U)min) if U] = 1;
— maz-enabled at M (or M[U)maq) if there is no transition ¢ such that we have
MU+ {}) rec: and
— Imaz-enabled at M (or M[U)imaz) if there is no transition ¢ such that we
have M[U+{t}) frec and D(t) € D(U). (Note that localities are only relevant
for Imax-enabledness.)
Let m € {free,min, max,lmax} be a mode of execution. If U is m-enabled at
M, then it can be m-ezecuted leading to the marking M’ = M — prEy(U) +
POSTy (U). This means that the execution of U ‘consumes’ from each place p
exactly W(p,t) tokens for each occurrence of a transition ¢ € U that has p as
an input place, and ‘produces’ in each place p exactly W (t,p) tokens for each
occurrence of a transition ¢t € U with p as an output place. If the m-execution of
U leads from M to M’ we write M[U)mM’. A sequence o = U; ... U, of non-
empty steps is an m-step sequence (from the initial marking M) if there are
markings My, ..., M, of N satisfying M;_1[U;}mM; for every i < n. Such a o is
called an m-step sequence from My to M,, and M, is an m-reachable marking.

2.3 From Basic Membrane Systems to PTL-Nets
We now recall the details of the translation from the basic model of membrane
system to PTL-nets introduced in [15]. Let IT = (V, pu,w?, ..., wl,, Ry,..., Rm)

be a membrane system of degree m. Then the corresponding PTL-net is NLj; =
(P, T,W, My,®) where the various components are defined thus:

- PLVx {1,...,m}and T LT U...UT,,, where each T} consists of distinct
transitions ¢} for every evolution rule r € R;;

Synchrony and Asynchrony in Membrane Systems 73

(a,1) (b,1) (e, 1)

ty '2
bbe %
r': {c,b} — {c, ¢} O
(a) K / (a,2) (b,2) (¢,2) (b

Fig. 2. A membrane system (a); and the corresponding PTL-net (b)

)

— for every place p = (a,j) € P and every transition t =7 € T,

rhs"(a) ifi=j

ar [lhs"(a) ifi=j ar) Ths" (aou) if (j,7) € p
Wip.t) = {0 otherwise Wit.p) = rhs”(ain;) if (1,7) € p
0 otherwise

— for every place p = (a,j) € P, its initial marking is My(p) £ w? (a).
— for every transition t = 7 € T, its locality is D(t) = 4.

An example is the membrane system depicted in Figure 2(a). It consists of
two nested membranes (m; and ms), two rules (rule r associated with mq, and
rule r’ associated with ms; m is the child and my is the root in the membrane
structure), and three symbols denoting molecules (a, b, and c¢). Initially, the
compartment c¢; inside mj contains two copies of both a and b, and c¢g, in-
between the two membranes, contains two copies of b and a single copy of ¢. To
model this membrane system as a PTL-net, we introduce a place (z,j) for each
kind of molecule z and compartment c;. For each rule r associated with m; we
introduce a separate transition ¢] with locality . If the transformation described
by a rule r of membrane m; consumes k copies of molecule = from compartment
¢;, then we introduce a k weighted arc from place (x,j) to transition ¢}, and
similarly for molecules produced by transformations. Finally, assuming that,
initially, compartment c; contained n copies of molecule x, we introduce n tokens
into place (z, 7). The resulting PTL-net is depicted in Figure 2(b).

Let C' = (w1, ..., wy,) be a configuration of IT. Then the corresponding mark-
ing ¢(C) of NLj is given by ¢(C)(a,i) = w;(a), for every place (a,i) of NLj.
Similarly, for any vector multi-rule R = (1/%17 ey ﬁm) of IT, we define a multiset
Y(R) of transitions of NLj; such that ¢(R)(t}) = R;(r) for every th € T. Note
that ¢ is a bijection from the configurations of II to the markings of NLj, and
1) is a bijection from vector multi-rules of IT to steps of NLj;.

We now can formulate a fundamental property concerning the relationship be-
tween the dynamics of the basic membrane system II and that of the

74 J. Kleijn and M. Koutny

corresponding PTL-net. Let m € {free, min, maz,lmax} be a mode of execu-

tion of membrane systems. Then: C' ==, C" if and only if &(C) [W(R))m o(C).
Since the initial configuration of II corresponds through ¢ to the initial marking
of NLj, the above immediately implies that the m-computations of II coincide
with the m-step sequences of the PTL net NLj.

2.4 Causality and Concurrency in System Behavior

The step sequences defined by the four different modes of execution of PTL-
nets provide important insights into the concurrency aspects of the thus defined
behavior. They are, however, still sequential in nature in the sense that steps
occur ordered thus obscuring the true causal relationships between the occur-
rences of transitions. Yet Petri nets can easily support a formal approach where
this information is readily available by unfolding behaviors (step sequences) into
structures which allow an explicit representation of causality, conflict, and con-
currency (see [20]). A well-established way of developing such a semantics is
based on a class of acyclic Petri nets, called occurrence nets [29]. What one es-
sentially tries to achieve is to trace the changes of markings due to transitions
being executed along some legal behavior of the original PT-net, and in doing
so record which resources were consumed and produced.

Recall that for free parallelism, localities are not relevant. Looking at the
(free-)step sequence o = {a}{t,a}{u,t} of the PTL-net in Figure 1, it is not
immediate that transition u could have occurred before the second occurrence
of transition a or, in other words, that the former is not causally dependent on
the latter.

Figure 3 illustrates the idea of how to unfold o. The initial stage represents
only the initial marking which includes two separate (labeled) conditions (this
is how places are called in occurrence nets), each representing an initial token
in place r. Executing step {a} consumes the p-condition, creates an a-labeled
event (this is how transitions are called in occurrence nets), as well as two new
conditions: a p-condition and a ¢g-condition. An important point is to notice that
we create a fresh p-condition rather than a loop back to the initial one since we
want to distinguish between different occurrences of a token in the same place; as
a result the occurrence net being constructed will be an acyclic graph. Another
important point is that the environment of the generated a-event corresponds
exactly to the environment of transition a; namely, it consumes a p-token and
creates a p-token and a g¢-token. After that, executing step {t,a} consists in
consuming three conditions and creating two events and three fresh conditions,
and similarly for the last step {u, t}. As a final result, we obtain an acyclic net
labeled with places and transitions of the original PT-net; it is called a process
of the original PT-net. The underlying, unlabeled, net is referred to as an occur-
rence net. Note that in these nets each condition has at most one incoming arc
and at most one outgoing arc (is non-branching) as it is caused by at most one
event and is available as a resource to at most one event. In particular, there
are no choices (conflicts) between events as these have been resolved during the

Synchrony and Asynchrony in Membrane Systems 75

s 7‘@
t
a P
; r®
; =
i {a) p%%@
r TQ
t s
‘ rO——— =10
t {a}{t,a} p(}—Dé(O——DQQ
r rO
. o—»&%&@
t {a}{t,a}{u t} 540/
e t
r [—©s

Fig. 3. Constructing a process corresponding to {a}{t,a}{u,t}

run. The occurrence net has a default initial marking consisting of a token in
each of the conditions without an incoming arc.

It is now possible to look both at the structure of the occurrence net and at the
(labelled) executions which are possible from its default initial marking, mak-
ing some important observations (see, e.g., [13] and the semantical framework
outlined there) relating to:

Causality. The causality relationships among the executed transitions can
be read-off by following directed paths between the events; for example in
Figure 3, the lower (second) t-event is caused by both a-events, while the
upper (first) one is caused only by the leftmost a-event.

Concurrency. Events for which there is no directed path from one to another
can be thought of as concurrent; in Figure 3, the second a-event and the u-
event are concurrent (not causally related); and so are the two t-events.
Reachability. Any maximal set of conditions for which there is no directed
path from one condition to another corresponds to a (free-)reachable marking
of the original PT-net.

Representation. The step sequence on basis of which the process was created
can be executed from the initial default marking in the occurrence net. So the
original behavior has been retained. In Figure 3, there are several different
(labeled) free-step sequences (e.g., {a}{t}{a,u}{t}) that can be executed
by the occurrence net defined by o = {a}{t,a}{u, t}, including o itself.

76 J. Kleijn and M. Koutny

t
Os r® el -0s
Op P O—F-O1—Or
. Oq . a p \?\Oq
(a) ()

Fig. 4. Process corresponding to {a}{t,a} (a); and its default initial marking (b)

1 e

rO

LI W
a p

/

— Ezecutability. Any (labeled) step sequence of the occurrence net (from the de-
fault initial marking to the default final marking (consisting of tokens placed
in each of the conditions without an outgoing arc) is a legal step sequence
of the original PT-net. (The step sequence {a}{t}{a,u}{t} in Figure 3 is a
free-step sequence of the net in Figure 1.)

From the point of view of causality and concurrency, the minimal parallelism
semantics is almost exactly the same as in the case of free parallelism. The only
difference is that executability is formulated with respect to step sequences where
each step is a singleton, rather than a general finite multiset of transitions.

To deal with locally maximal parallelism, as a first attempt, we simply adopt
the unfolding strategy as in the case of free parallelism. We only ensure that
the step sequence consists of lmax-steps. Moreover, we preserve the localities
of the transitions in the events created while constructing the occurrence net.
Figure 4 shows the result for the PTL-net of Figure 1 and the lmax-step sequence
{a}{t,a}. Then we need an argument that the resulting process is what one
would want to take for further analyzes. In particular, one would want to retain
executability as in the previous construction.

In the case of our example, we can execute the occurrence net and conclude
that under the locally maximal parallelism it admits the step sequence {a}{a}{t}
which is not a legal lmax-step sequence of the PTL-net of Figure 1 since af-
ter {a}{a}, two occurrences of ¢ are enabled. Thus, in general it would be too
hasty to accept the standard unfolding routine as satisfactory since information
on (additional) enabledness may be lost. Consider further the PTL-net in Fig-
ure 5(a) and its lmax-step sequence {t,u,v}{w,z}. Proceeding as in the case of
free parallelism, we obtain an occurrence net as shown in Figure 5(b). Now the
problem is that it has an Imax-step sequence from the default initial marking
which through its labels corresponds to {u,v}{t,z}{w}. This, however, is not
an lmax-step sequence of the original PTL-net. An intuitive reason is that the
standard unfolding ‘forgets’ that transition x was enabled at the stage where
transition w was selected. Then, delaying the execution of the w-event, creates a
situation where the executed step (though lmax-enabled within the occurrence
net) does not correspond to an lmax-step in the PTL-net.

To cope with this problem, [16] added to occurrence nets special barb-events,
depicted as darkly shaded rectangles. Barb-events are not labeled with tran-
sition names and are not meant to be executed; rather, they are used in the

Synchrony and Asynchrony in Membrane Systems 77

G’ @*G’ @*G’
OpaEins® O~ O~E—-O

O Bl @yl O El e @y 1
(a) v z (b) v z (c) v z

Fig.5. PTL-net (a); an occurrence net constructed from {t,u,v}{w,z} (b); and a
barbed process (c)

calculation of the enabled sets of events. Such modified labeled occurrence nets
are called barbed processes. Rather than providing a full formal definition of
how barb-events are added during the unfolding procedure, which can be found
in [16,17], we only mention here that it is based on checking for the existence
of locally newly enabled transitions not (yet) included in the executed scenario,
e.g., since another co-located transition was selected. Figure 5(c) illustrates the
modified construction for the nets in Figure 5(a,b). After executing {u, v}, it is
now impossible to select {t,z} since there is a record in the form of the barb-
event that such a step would not be maximal in the locality to which transition
{z} belongs. The only way of continuing is to execute {t} and after that {z, w},
generating a legal lmax-step sequence {u,v}{t}{z,w}.

The maximal parallelism semantics of a PTL-net coincides with the locally
maximal parallelism semantics of this PTL-net after changing it so that all tran-
sitions are mapped to the same locality.

3 Extensions Expressible Within PTL-Nets

In the previous section we outlined the way in which the basic membrane sys-
tems can be translated into PTL-nets, and their behavioural properties inves-
tigated using processes of the latter. In the rest of the paper, we will change
focus and investigate what happens if more sophisticated types of reaction rules
are allowed. For the sake of simplicity, we will assume from now on that the
membrane systems and PTL-nets are executed according to the free parallelism
paradigm (notice that the level of synchrony present in executions is orthogonal
to the way individual reaction rules are specified).

We start by considering extensions for which the PTL-net semantics can be
used without any, or with only slight, modifications. These extensions have been
discussed in [23,2] and additional references will be provided throughout the
text. Note that each extension is motivated by some natural phenomenon in the
area of biological systems.

Catalysts. In this variant, a subset Cat of objects, called catalysts, is distin-
guished and each reaction rule r is of the form [hs” — rhs” with either no
catalysts involved at all or with lhs"(c) = rhs”(c) = 1, for exactly one ¢ € Cat,
and lhs" () = rhs"(¢) = 0, for all other catalysts ¢’. In other words, in certain

78 J. Kleijn and M. Koutny

reaction rules a catalyst has to participate, but it is neither destroyed in the
process nor can be created. Clearly, since catalysts can be seen as resources for
the reaction rules in which they occur (to be returned after application), these
rules can be translated into PTL-transitions in exactly the same way as any
other rule. Thus, the translation from Section 2.3 is fully adequate. Similarly,
other variants of catalysts, such as m-stable catalysts and mobile catalysts, can
also be treated by this basic translation.

Rules creation and consumption. Within the basic model of membrane
systems no assumptions are made with respect to the number of times a reaction
rule is available for application in a single execution step. Now, it is assumed
that reaction rules are finite resources in the same way as the objects located in
compartments [3]. More precisely, each configuration has additional information
for each membrane about the number of locally available copies of reaction rules.
Each rule r is of the form lhs” — rhs"/z, with z a multiset over the set of
rules. Rules are executed in the usual manner with respect to the multisets of
objects consumed and created. Moreover, if r when executed is associated with
membrane ¢, then a copy of r is consumed from the multiset of rules currently
available in ¢ and the multiset z is added to that pool. Note that we may assume
that each rule occurs associated with each membrane.

In this case the translation proceeds as in Section 2.3 with two key modifi-
cations: (i) for each transition ¢! corresponding with rule r in association with
membrane , a unique control place is added which acts as a counter and indicates
the number of copies of r available in the corresponding membrane; (ii) this con-
trol place is an additional input place to ¢7 and if r is of the form [hs" — rhs”/z,
then ¢! has, for each control place corresponding with a rule 7’ € z associated
with ¢, an additional output place with weight z(r').

Systems with i/o communication. These systems are defined as in Sec-
tion 2.1, except that in rules r of the form [(hs” — rhs” the right hand side
rhs” is a multiset over V U {aout | @ € V} U{as, | @ € V}. The index in of
a;n means that a copy of object a is to be moved into any of the inner mem-
branes of the membrane to which r belongs. Thus every rule represents a set
of rules of the original form, each such rule corresponding to a combination of
non-deterministic choices of inner membranes for all occurrences of an a;,. As
a result, the translation has to be lifted to a more abstract level and each reac-
tion rule involving sending objects to inner membranes is translated into a set
of transitions with the same pre-multisets, but possibly different post-multisets.
For example, if 3 and 7 are two inner membranes for the rule ab — ¢;,d;n, then
this rule is translated into four transitions, with the following post-multisets:

{(¢,3),(d,3)}, {(¢,3),(d,)}, {(¢,7), (d,3)} and {(c, 7), (d, 7)}.

Symport/antiport. In a symport/antiport membrane system the rules asso-
ciated with a membrane ¢ are of one of the forms (x,in) or (y,out) — symport
rules — or (z,in;y, out) — antiport rules. Here (x,in) means that the multiset
z is moved from the outside of i to its inside and, similarly, (y, out) means that

Synchrony and Asynchrony in Membrane Systems 79

multiset y goes from the inside of ¢ to its outside. Moreover, (z,in;y, out) means
that x and y are moved simultaneously. Note that with the given membrane
structure, it must be the case that x moves from the ‘location’ of the parent of ¢
to i and y in the opposite direction. Consequently, we can again apply the basic
translation in case of rules of the first two forms. The third one is somewhat dif-
ferent since it consumes objects from two neighboring compartments. However,
its translation is straightforward and what we simply obtain is a transition tak-
ing tokens from places corresponding to different compartments of the original
membrane system.

Tissue membrane systems. In this case objects are transported through
channels rather than membranes. Thus the nested tree-like structure of mem-
branes is replaced by a graph, with its edges representing channels connecting
compartments in a completely arbitrary way. Often it is assumed that at most
one (symport or antiport) rule associated with a channel is executed at any given
moment. Since the actual membrane structure is not relevant for the translation,
the first assumption has no effect, and the translation looks as in the case of sym-
port and antiport rules. The second assumption can be addressed by introducing,
for each communication channel, a special place marked initially with a single
token which is connected by a pair of arcs (pointing in opposite directions) with
every transition representing a reaction rule associated with that channel. In this
way, there can never occur more than one of these transitions at the same time.
As in the case of rules creation and consumption, these additional places are an
example of what might be called a ‘control structure’ which can be used in the
Petri net model to implement a specific behavioral aspect of membrane systems.

4 Other Extensions

Although it is possible to use the basic class of PTL-nets to analyze various
important classes of membrane systems, not all interesting phenomena can be
modeled by using purely the features of PTL-nets.

Promoters. It is now assumed that a reaction rule r can have the form lhs" —
rhs”|. meaning that c is a promoter object which has to be present for the rule
to be executed [6]. It should be stressed that such an object is not a catalyst
since catalysts are actively involved in reactions, whereas a single occurrence of ¢
in its role of promoter may enable simultaneously two or more executions of the
rule. It turns out that the standard model of PTL-nets is no longer sufficient for
the modelling of promoters because arcs between transitions and places indicate
consumption and production. We need an extension with (weighted) activator
arcs [13], represented by arcs with small black dots at the end. We call the
extended model PTLA-nets. Activator arcs represent ‘tests’ for the presence of
tokens in places. An activator arc of weight n between place p and transition
t implies that the latter can only be executed if the former contains at least n
tokens. The resulting marking is calculated in exactly the same way as before,
i.e., activator arcs have no effect on the result and are simply ignored.

80 J. Kleijn and M. Koutny

2|1
a ()
! a A,
t {a} PO— @p
a rO————= s
f . O
t {a}{t} PO— @p
a rO———= (s
! 2 A% o
t {ap{t}{a} { PO—o Op—— ©p
e . @q

Fig. 6. PTLA-net of the one-producer/two-consumers system with a non-eager pro-
ducer, and constructing an ao-process corresponding to {a}{t}{a}

The translation of reaction rule lhs” — rhs”|. associated to membrane i pro-
ceeds as the basic translation for [hs”™ — rhs”, and after that an activator arc of
weight 1 is added to link the resulting transition with place (¢, 7). A more elaborate
definition of promoters assumes the format (hs” — rhs”|, where u is a multiset
of objects. The translation then proceeds similarly but now a number of activator
arcs of weights greater or equal to 1 as described by w are added at the end.

The process semantics of the resulting translations can no longer be captured
using the standard process semantics of Petri nets. What we use are activator
processes (or ao-processes) which are occurrence nets with additional (weight 1)
activator arcs between events and conditions to test for the presence of tokens
in the places corresponding to the conditions. With the distinguishing feature
of activator arcs being that they do not consume conditions, there may be sev-
eral activator arcs adjacent to a single condition (in addition, of course, to the
standard directed arcs, and in contrast with the non-branching of conditions
with respect to ordinary arcs). Consider, for instance, the net in Figure 6 which
models a system where the producer only produces items if there is at least
one consumer waiting for them. A possible free-step sequence is {a}{t}{a} and
constructing the corresponding ao-process is illustrated in Figure 6. Notice that
we have here a condition connected by activator arcs to two different events.

The causality semantics of ao-processes is no longer the same as that of the
standard processes. Basically, in the latter causality is based on partial orders

Synchrony and Asynchrony in Membrane Systems 81

whereas in ao-processes another relationship, called weak causality, is needed. It
turns out that the standard partial order treatment of causality can be extended
to cover its weak variant as well, and the main results and properties can be
recovered [13,14].

Inhibitors. Inhibitors are objects the presence of which makes the execution
of certain rules impossible. In this case, a reaction rule r can have the form
lhs" — rhs"|-. meaning that ¢ is an object which, when present in the com-
partment, inhibits the execution of this rule [6]. Again, and for the same reason
as with promoters, we need to extend PTL-nets, in this case with weighted in-
hibitor arcs [13,26], represented by arcs with small circles at the end. We call
the extended model PTLI-nets. The meaning of an inhibitor arc of weight n > 0
between place p and transition ¢ is that the latter can only be executed if the
former contains at most n tokens (thus, if n = 0 then the place must be empty of
tokens). The resulting marking is calculated in exactly the same way as before,
i.e., inhibitor arcs have no effect on the result and are simply ignored.

The translation of reaction rule lhs” — rhs"|.. associated to membrane 7
proceeds as the basic translation for [hs” — rhs”, and after that an inhibitor
arc of weight 0 is added to link the resulting transition with place (¢,4). A more
elaborate definition of inhibitors assumes the format lhs” — rhs”|, where u is a
set of object symbols. The translation proceeds then similarly but now inhibitor
arcs of any weights can be added.

The process semantics of the resulting translations can be captured using
the ao-process semantics as in the case of promoters. Consider, for instance,
the net in Figure 7 which models a system where the producer can cancel the
production of items only if there is no consumer waiting for them. A possible
free-step sequence is {a}{a, t}{t}{c} and the construction of the corresponding
ao-process is illustrated in Figure 7. Note that activator arcs rather than inhibitor
arcs are used to test for the holding of conditions. Two activator arcs are used
to represent the test for the presence of two tokens in the place s. This ensures
that place r is empty since in the PTLI-net of Figure 7 the total number of
tokens in places s and r is always equal to 2. In Petri net terminology places like
that are called complementary and the modeling of inhibitor arcs in a process
semantics is then rather straightforward. In case a complement for a place like
r cannot be found, a more elaborate construction can be used to achieve the
desired effect [13,14]. Since the causality semantics of PTLI-nets is based on
ao-processes, it takes into account weak causality, as for PTLA-nets.

Permeable membranes. The new kind of reaction rule allowed here is lhs" —
rhs” /7. The special symbol 7 indicates that rule r, when executed, causes its
associated enclosing membrane to become ‘thick’ (or non-permeable), and no
object can pass through it anymore [22]. To render this feature within the
Petri net model, we introduce a special, initially empty, place perm; associated
with the membrane i. A directed arc is added to perm; from those transitions
which correspond to rules which make membrane i thick (thus there may be sev-
eral transitions which can put tokens into the control place perm;). Then each

82 J. Kleijn and M. Koutny

{aHa t}

5 0 w9

{aH{a t}{t}

S 0 w9

{aHa, t}{tHc}

S o *sw 9

Fig.7. PTLI-net of the one-producer/two-consumers system with considerate pro-
ducer, and constructing an ao-process corresponding to {a}{a, t}{t}{c}

transition ¢ which models a reaction rule r’ transferring objects through mem-
brane i, is connected with perm; using a simple inhibitor arc. Hence, as long
as no transition which places a token into the control place perm; is executed,
transitions transferring objects through the membrane i are possible. However,
once there is at least one token in perm;, transitions corresponding to rules like
r’ can no longer be executed as no transition can remove tokens from perm;.
Hence PTLI-nets with the associated ao-processes are sufficient to model the
effect of the non-permeability of membranes.

Dissolving membranes. To dissolve membranes, reaction rules are used of the
form lhs" — rhs” /6 with § a special symbol indicating that execution of this
rule causes its associated enclosing membrane (which may not be the outermost
membrane) to dissolve [22,21]. Moreover, all objects present in the compartment
are incorporated into the immediately enclosing compartment, and all the rules
associated to membrane ¢ are rendered inapplicable. The dissolving of mem-
branes may be modeled by a combination of activator and inhibitor arcs. Take,
for example, a membrane system with four membranes, arranged into a line-like
tree 1 — 2 — 3 — 4. Assume further that there are three dissolving rules: r’
associated with 2, " associated with 3, and 7" associated with 4. Then we add
three control places for keeping information about dissolved membranes: dissso,

Synchrony and Asynchrony in Membrane Systems 83

disss and diss, which are initially empty, and each has an incoming directed arc
from the transitions corresponding respectively to v/, " and r"”.

Suppose now that we need to translate a rule r : a — aa associated with
membrane 2. To achieve the desired effect, we introduce three transitions with
locality 2: ¢ with pre-multiset {(a,2)} and post-multiset {(a,2), (a,2)}; t5 with
pre-multiset {(a,3)} and post-multiset {(a,3), (a,3)}; and ¢} with pre-multiset
{(a,4)} and post-multiset {(a,4), (a,4)}. Then we add an inhibitor arc between
disso and each of these three transitions, as well as three activator arcs: between
t5 and disss, t) and disss, t) and disss. In this way, ¢} can be executed only if
the dissolution rules " and r”” have happened, but r’ has not. Note that such
a translation can properly render even a simultaneous application of multiple
instances of the dissolution rules. Process semantics of the resulting Petri net is
a combination of those of PTLA-nets and PTLI-nets.

5 Concluding Remarks

A main advantage of the process semantics of Petri nets is that it provides a very
compact representation of the (step sequence) behavior of a net. This feature has
been exploited in the development of efficient model checking algorithms [19],
where issues relating to reachability of certain configurations and termination
(or deadlock) of a system can be addressed. Given a process notion for mem-
brane systems obtained via a faithful translation into (a specific kind of) Petri
nets, relevant behavioral properties can be efficiently investigated. For example,
one can check for the presence of certain molecules (also in specific compart-
ments), by suitably adapting the notion of reachability in an occurrence net. In
some cases, it might be important to know whether local computations within
compartments (and across the whole system) are independent of each other, and
answering this kind of question could amount to checking for the causal links
between various events present in processes.

The classical process semantics of Petri nets is based on labeled occurrence
which provide a faithful representation of causality and concurrency in the case
of asynchronously operating nets (and the corresponding membrane systems).
As we pointed out, to deal with semantics involving synchrony (such as locally
maximal parallelism) these processes need to be augmented with additional in-
formation, resulting in barbed processes.

In this paper, we discussed a number of extensions of basic membrane systems
and their transformation into equivalent Petri nets. It turned out that some ex-
tensions can be treated with the existing PTL-nets model (perhaps after adding
additional control structures to the existing translation). However, other exten-
sions need more expressive processes, and we proposed to augment (barbed)
processes with so-called activator arcs (which have already been investigated
within the Petri net theory).

There are several possible directions for future work. The first is to complete
the development of the theory of barb-processes making it fit into the seman-
tical framework of [13]. Also the Petri net semantics for extensions of the basic

84 J. Kleijn and M. Koutny

class of membrane systems should be further developed leading to suitable pro-
cess notions and derived causality structures. Another important question is a
complete characterization of the state graphs generated by various models of
PTL-nets allowing, in particular, to answer the question whether a given state
graph could have been generated by a membrane system of a given kind (such
a characterization has so far been provided for the class of safe PTL-nets [18]).
Last but not least, once a sound notion of behavioral characterization of a mem-
brane system has been provided, one can re-introduce the notion of a successful
computation, the result it produces, and the notion of an input-output relation
taking into account both non-successful and ongoing computations.

Acknowledgment. We are grateful to Grzegorz Rozenberg for introducing us
to the area of membrane systems and many inspiring discussions. This research
was supported by the EPSRC project CASINO.

References

1. Membrane systems web page: http://psystems.disco.unimib.it/

2. Alhazov, A.: Communication in Membrane Systems with Symbol Objects. PhD
Thesis, Rovira i Virgili University, Tarragona, Spain (2006)

3. Arroyo, F., Baranda, A.V., Castellanos, J., Paun, G.: Membrane Computing: The
Power of (Rule) Creation. Journal of Universal Computer Science 8 (2002) 369-381

4. Best, E., Devillers, R.: Sequential and Concurrent Behaviour in Petri Net Theory.
Theoretical Computer Science 55 (1988) 87-136

5. Best, E., Fernandez, C.: Nonsequential Processes. A Petri Net View. EATCS Mono-
graphs on Theoretical Computer Science. Springer-Verlag, Berlin (1988)

6. Bottoni, P., Martin-Vide, C., Paun, G., Rozenberg, G.: Membrane Systems with
Promoters/Inhibitors. Acta Informatica 38 (2002) 695-720

7. Calude, C.S., Paun, G., Rozenberg, G., Salomaa, A. (eds.): Multiset Processing.
Mathematical, Computer Science, and Molecular Computing Points of View. Lec-
ture Notes in Computer Science, Vol. 2235. Springer-Verlag, Berlin (2001)

8. Carloni, L.P., Sangiovanni-Vincentelli, A.L.: A Formal Modelling Framework for
Deploying Synchronous Designs on Distributed Architectures. Proc. of First Inter-
national Workshop on Formal Methods for Globally Asynchronous Locally Syn-
chronous Architectures (2003)

9. Dal Zilio, S., Formenti, E.: On the Dynamics of PB Systems: a Petri Net View.
In: Martin-Vide, C., et al. (eds.): WMC 2003. Lecture Notes in Computer Science,
Vol. 2933. Springer-Verlag, Berlin (2004) 153-167

10. Desel, J., Reisig, W., Rozenberg, G. (eds.): Lectures on Concurrency and Petri
Nets. Lecture Notes in Computer Science, Vol. 3098. Springer-Verlag, Berlin (2004)

11. Freund, R.: Sequential P Systems. Romanian Journal of Information Science and
Technology 4 (2001) 77-88

12. Goltz, U., Reisig, W.: The Non-sequential Behaviour of Petri Nets. Information
and Control 57 (1983) 125-147

13. Kleijn, H.C.M., Koutny, M.: Process Semantics of General Inhibitor Nets. Infor-
mation and Computation 190 (2004) 18-69

14. Kleijn, H.C.M., Koutny, M.: Infinite Process Semantics of Inhibitor Nets. In: Do-
natelli, S., Thiagarajan, P.S. (eds.): ICATPN 2006. Lecture Notes in Computer
Science, Vol. 4024. Springer-Verlag, Berlin (2006) 282-301

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.
30.

Synchrony and Asynchrony in Membrane Systems 85

Kleijn, H.C.M., Koutny, M., Rozenberg, G.: Towards a Petri Net Semantics for
Membrane Systems. In: Freund, R., et al. (eds.): WMC 2005. Lecture Notes in
Computer Science, Vol. 3850. Springer-Verlag, Berlin (2006) 292-309

Kleijn, H.C.M., Koutny, M., Rozenberg, G.: Process Semantics for Membrane Sys-
tems. To appear in the Journal of Automata, Languages and Combinatorics (2006)
Kleijn, H.C.M., Koutny, M., Rozenberg, G.: Processes of Petri Nets with Localities.
Report 941, School of Computing Science, University of Newcastle (2006)
Koutny, M., Pietkiewicz-Koutny, M.: Transition Systems of Elementary Net Sys-
tems with Localities. In: Baier, C., Hermanns, H. (eds.): CONCUR 2006. Lecture
Notes in Computer Science, Vol. 4137. Springer-Verlag, Berlin (2006) 173-187
McMillan, K.L.: Using Unfoldings to Avoid the State Explosion Problem in the
Verification of Asynchronous Circuits. In: von Bochmann, G., Probst, D.K. (eds.):
CAV 1992. Lecture Notes in Computer Science, Vol. 663. Springer-Verlag, Berlin
(1992) 164-174

Nielsen, M., Plotkin, G., Winskel, G.: Petri Nets, Event Structures and Domains,
Part 1. Theoretical Computer Science 13 (1980) 85-108

Paun, G.: Computing with Membranes. Journal of Computer and System Sciences
61 (2000) 108-143

Paun, G.: Computing with Membranes — A Variant. International Journal of Foun-
dations of Computer Science 11 (2000) 167-182

Paun, G.: Membrane Computing, An Introduction. Springer-Verlag, Berlin (2002)
Paun, G., Rozenberg, G.: A Guide to Membrane Computing. Theoretical Computer
Science 287 (2002) 73-100

Paun, G., Yu, S.: On Synchronization in P Systems. Fundamenta Informaticae 38
(1999) 397-410

Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice Hall (1981)
Qi, Z., You, J., Mao, H.: P Systems and Petri Nets. In: Martin-Vide, C., et al. (eds.):
WMC 2003. Lecture Notes in Computer Science, Vol. 2933. Springer-Verlag, Berlin
(2004) 286-303

Reisig, W., Rozenberg, G. (eds.): Lectures on Petri Nets. Lecture Notes in Com-
puter Science, Vol. 1491 and 1492. Springer-Verlag, Berlin (1998)

Rozenberg, G., Engelfriet, J.: Elementary Net Systems. In: [28] (1998) 12-121
Stahl, C., Reisig, W., Krsti¢, M.: Hazard Detection in a GALS Wrapper: a Case
Study. In: Desel, J., Watanabe, Y. (eds.): ACSD’05, IEEE Computer Society (2005)

MP Systems Approaches to Biochemical
Dynamics: Biological Rhythms and Oscillations

Vincenzo Manca

University of Verona
Department of Computer Science
Strada Le Grazie, 15
37134 Verona, Italy
vincenzo.manca@univr.it

Abstract. Metabolic P systems are a special class of P systems which
seem to be adequate for expressing biological phenomena related to
metabolism and signaling transduction in biological systems. We give
the basic motivation for their introduction and some ideas about their
applicability to some basic biological oscillators.

1 Introduction

P systems were introduced as a new computation model, inspired by biology
[31,32], where multisets and membranes are the two main ingredients. The the-
ory of P systems has grown very fast by studying different kinds of evolution
rules and strategies. Important mathematical results have been established on
the computational power of different kinds of P systems and on their relation-
ships with other computational models [32,39]. The state of a P system is given
by the multisets of objects present inside each membrane. The passage from a
state to another is produced by the application of rules (a set of rules for each
membrane) which act independently in each membrane and, typically, are ap-
plied in a mazimally parallel way. This means that a maximal set of rules which
are applicable is chosen and applied in a parallel way.

The P system paradigm has also been used to mathematically model several
biomolecular phenomena acting at the cellular level, such as trans-membrane
transport and communication [29,30], consumption of energy [16,33] and even
more specific biological processes [15,4,36,9].

Early attempts of symbolic descriptions of metabolic processes were initi-
ated by the author, approximately ten years ago [23,24]. In these papers some
primitive notions of membrane systems were considered, but the use of logical
formulae driving metabolite concentrations made them too general for express-
ing biological situations in a significant way. The theory of P systems was crucial
in two important steps toward a new symbolic model of a metabolic system. A
first step was the dynamical perspective in the study of P systems, introduced in
[3], where the dynamical patterns of P systems were the main focus of investiga-
tion. A second step was the introduction of a molar perspective, borrowed from
chemistry, with an abstract notion of “reaction strength” as a parameter able to

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 86-99, 2006.
© Springer-Verlag Berlin Heidelberg 2006

MP Systems Approaches to Biochemical Dynamics 87

regulate the cooperation/competition among the rules of P systems [25]. In fact,
in a very first approximation, a cell is a membrane system, and its functioning is
determined by all the types of molecules inside it, by the amount of molecules of
these types, and by the cell compartments where they are located [1]. Therefore,
it is of great importance to define a method for computing the evolution of a P
system that is directly meaningful with respect to biochemical reactions.

The Brusselator, which is a differential model of a chemical oscillator, inspired
by the famous Belousov-Zhabotinsky reaction, was modeled in [34,35] by means
of multiset rewriting rules. This model suggested us the idea of defining a general
algorithmic procedure on P systems which could provide results comparable with
the classical differential models, but using different principles. Three main points
emerged in this direction: 1) population multiset rewriting rules, instead of object
rewriting rules, ii) observation (discrete) time, instead of (continuous) reaction
time, and iii) a criterion for computing, at each step, the masses of reactants
which the rules need for producing their products.

In this perspective, a transformation AA — BC is better read in chemical
terms, as something which expresses the following prescription: “two moles of
A produce one mole of B and a mole of C”. Here a mole is a conventional
population unit like a battalion, a company, a brigade, which is not conceived
in an absolute way, as it happens in the classical chemical setting (1 mole ~
6.02 x 10%® molecules), but it is relative to the specific system. If we fix the
number of objects of a mole, then the dimension of a multiset is expressed, in
terms of moles, by a rational number.

When many reactions are working together, a competition among reactions
needing the same kinds of reactants is better expressed by a notion of reaction
unit. For example, a rule such as AA — BC should reasonably say that 2m
objects of type A have to be consumed by the rule, and m objects B plus m
objects C have to be produced by it. The crucial point of this discussion is “how
has the number m to be calculated in order to reproduce adequately a given
biochemical process?” This problem becomes more difficult than it may appear
at a first glance. Such a number depends on the relative strength of a rule with
respect to the other rules which are competing with it for the same reactants.
We call this strength reactivity, and in general, it depends on the current state
of the system.

MP systems [27] formalize these intuitions by considering P systems with a
particular deterministic procedure for computing their evolution. This proce-
dure, called MP Algorithm, shortly MPA [28], aims at capturing the salient
chemical mechanisms that are responsible for the dynamics of a wide class
of biomolecular processes. We have shown that MP systems effectively model
the dynamics of several biochemical processes: the Belousov-Zhabotinsky reac-
tion (Brusselator) [6,8], the Lotka-Volterra dynamics [25,7,6,8,13], a Susceptible-
infected-recovered epidemic [6], the Leukocyte selective recruitment in the im-
mune response [15,6], the Protein Kinase C Activation [8], Circadian rhythms
[12], and Mitotic cycles [28]. Other phenomena under investigation concern

88 V. Manca

Cdc25A degradation in tumor processes, an oscillatory circuit that includes Pro-
tein Kinases ERK2 and PK [22] and the intercellular communication which oc-
curs in Dictyostelium discoideum. This organism is an amoeba very important
in developmental biology, which may switch from unicellular to multicellular
stages (isolated and collective phases) by means of a periodic chemical mecha-
nism, similar to hormonal communications in higher organisms [18]. A project,
of interest in the search for biological energy sources, intends to apply MP sys-
tems to the analysis of specific metabolism occurring in microbial fuel cells. From
a more theoretical point of view, interesting relationships were stated between
MPA and ODE (ordinary differential equations) [14]. In the section 3, we show
the relevance of these theoretical results in relation to an example of biological
modeling [17].

In the analysis of MP systems and of their applications an important role
is played by MP graphs [28], which we will briefly outline, and which yield an
immediate formulation of the structural aspects of MP systems in a style similar
to other graphical representations in signal transduction networks and metabolic
pathways [20,38].

2 Metabolic P Systems

MP systems are deterministic P systems where i) the state of the system, at
each time instant, is given by the amount of matter that is assigned to any
(chemical) substance present in the system, and ii) the transition to the next
state (after some specified interval of time) is calculated according to some mass
partition strategy, that is, the available matter of each substance is partitioned
among all reactions which need to consume it. The policy of matter partition is
regulated at each instant by some real values, called reactivities, which represent
the strength of any reaction.

The definition we give here of MP systems is similar, but different to those
given in our preceding papers on this subject. In the present form it seems
more appropriate to the further theoretical and experimental development of
these systems, especially in the process of providing models from the data of
biological observations.

A discrete multiset over an alphabet T is a function from T to the set N
of natural numbers. A continuous multiset over an alphabet T is a function
from T to the set R of real numbers. As it is customary in P systems, we will
adopt the string notation for discrete multisets. Sometimes it is useful to use the
symbol + for concatenation, in order to stress that in multisets concatenation is
commutative, that is, when a string denotes a multiset, the order of its symbols
is not relevant (see [32] for more details on P systems notations) and, for any
string «, we write X € « for saying that X is a symbol occurring in a. The set
Q7 of states over an alphabet T consists of the continuous multisets over T'. The
passage from discrete to continuous states is motivated by the use of moles for
determining the mass associated to each symbol of T

MP Systems Approaches to Biochemical Dynamics 89

The notion of MP system we consider here should be better identified by that
of zero level MP system, because only one membrane is considered.

Definition 1 (MP System). An MP system is a construct
M = (TvRaFal/u;U'vTqu)
in which

— T is a finite set of symbols;

— R is a finite set of rules, i.e., pairs of discrete multisets over T' (represented,
as usual, in the arrow notation);

— F is the set of reaction maps, such that F = {f. |r € R}, where f. : Qr —
R. Very often the reactivity f.(q) in the state q depends only on the mass
associated to some of the symbols of T. For this reason, it is convenient
to introduce a real variable x = q(X) to any symbol X € T. We write
fr(z,y,...) to explicitate the variables z,y, ... which f, depends on;

— v is a natural number which specifies the value of a (conventional) mole of
M;

— 1 is a function which assigns to each X € T, the mass u(X) of a mole of
X, with respect to some measure unit;

— 7 s the temporal interval between two consecutive states;

— qo, the initial state of M, is an element of Qr.

The temporal evolution of an MP system M is calculated by means of a metabolic
difference operator Ay, which provides for any state ¢ € Qr a function

Aq:QT—ﬁR

such that, for every X € T, the state following ¢ in the temporal evolution of
M is given by ¢(X) + Aq(X).

Two assumptions are fundamental in the definition of reaction rules and re-
action maps used by MPA, which directly relate to the perspective of mass
partition strategy adopted for MP systems evolution.

Principle 1 (Inertia). In any MP system, for every X € T, a rule rx is
present, which is called inertial rule for the substance X, and such that X — X.
The inertia of rx is the reactivity of an inertial rule rx, in a given state, and
indicates the tendency of substance X to remain unchanged.

Principle 2 (Creativity). Any input rule r of type A — X is assumed to be,
implicitly, transformed into a rule A\, — A\.X where X\, is a new symbol in T,
called the input symbol of r. This means that a sort of input gate, as a container
of a given capacity of X, is assumed to feed the system from the outside, at a
rate depending on the reactivity of the input rule. This capacity determines the
creativity of the rule A\ — X, as the mazimum value of elements X that can
enter into the system at each evolution step.

90 V. Manca

The value of inertia of each element of T' (possibly extended with input symbols),
and the value of the creativity of input rules are very important parameters for
the evolution of MP systems according to the strategy we are going to define.

In order to define our MP algorithm, which formalizes the intuition given at
beginning of Section 2, we use the following notation from [28], that will be
adopted in the rest of the paper and it will be always related to a metabolic
system M = (T, R, F,v, u, T, qo)-

Definition 2 (MP Notation)

— FEach r € R is denoted by r : «p — B,; «a, identifies the multiset of the
substrates of r and [, identifies the multiset of the products of r;

— h(X) is the number of occurrences of X in ay;

gr(X) is the number of occurrences of X in ,;

- Ry(X)={reR|X ca};

Ry(X) = {r e R| X € 8,};

R(X) = Ra(X) U Ry(X);

(o) = [Ixea, q(X)) (by definition, (o) =1 if o = \).

We assume that if o, = A, then 3, € T, and if 6, = A then «,. € T

Definition 3 (MPA). The value of the metabolic difference operator A, of an
MP system, in a state q € Qr and on a symbol X € T, is given by:

Ay(X) =) (9:(X) = he(X)) - ur(q)

reR(X)

where

and, for everyY €T

Kyg= Y fle) and wyy(r) =

r€RL(Y) ’

where it is assumed that Ky 4 # 0.

3 MP Graphs and Biological Examples

The P metabolic algorithm was proven adequate in many cases of biological mod-
eling we listed at the end of Section 1. Examples of biological models, formalized
in terms of PM systems, will be collected in [5].

In an MP system two parts are clearly distinguishable: the signature and
the quantities. The first part indicates the kinds of objects, the reactions and
their regulation structure. The second part specifies the quantitative aspects
which give meaning to the numbers which describe the evolution of systems. We
represent the signature of metabolic P systems, in a way directly readable in

MP Systems Approaches to Biochemical Dynamics 91

L'
— 1 5 cyelin

Vd

Y

N

“i

LaEEenY

9

]
-

é

Fig. 1. The model provided by A. Goldbeter, from [17]

terms of PM algorithm, by means of graphs. Similar graphical formalisms were
developed in the context of complex reaction networks (SNA, Stoichiometric
Network Analysis, and MCA, Metabolic Control Analysis [10,11,37]). Formally,
an MP graph is a structure G = (T, R, F, E, C), where:

T is the set of nodes representing types (we can think of each t € T as a
container holding a certain amount of a peculiar kind of substance). Usually,
we represent such kind of nodes as big circles labeled with the type of objects
contained in it.

R is the set of nodes representing biochemical reactions between types. We
represent each of the nodes in R as a full bullet and we label it with the
name of the reaction represented by that node.

F' is the set of nodes labeled by reaction maps. We represent this kind of
nodes with full rectangles. These nodes are connected with a, possibly empty,
set of circles (types) but they are also connected with exactly one bullet node.
E is a set of nodes presenting input or output gates. It contains two different
kind of nodes: input gates and output gates. Both of them have the triangular
shape, where input gates have an arc exiting from a triangle vertex, and
output gates have an arc entering in a triangle edge.

C is a set of arcs between nodes. Edges are of two different kinds: plain edges
or dashed edges.

i) Plain edges connect types to biochemical reactions, in particular they
specify reactants and products of the reaction. Arcs connecting reac-
tants to reactions are depicted as lines while arcs connecting reactions
to products appear as arrows (oriented arcs).

92 V. Manca

;1'8

Fr=——
> ky+m

Fig. 2. A model of the mitotic oscillator of Figure 1 represented by a MP graph (from
[28])

ii) Edges which connect types with square nodes (reactivity nodes) are de-
picted as dashed lines, while edges which connect square nodes with
bullets are depicted as dashed arrows (see Figure 2).

The components E, C of an MP graph can be deduced from R and F, therefore
we can omit them when we specify a graph.

Figure 2 shows an MP graph related to the mitotic oscillator in amphibian
embryos, which is an important case study reported in [17]. Mitotic oscillations
are a mechanism exploited by nature to regulate the onset of mitosis, that is,
the process of cell division aimed at producing two identical daughter cells from

MP Systems Approaches to Biochemical Dynamics 93

a single parent cell. More precisely, mitotic oscillations concern the fluctuation
in the activation state of a protein produced by cdc2 gene in fission yeasts or
by homologous genes in other eukaryotes. The model considered here focuses on
the simplest form of this mechanism, as it is found in early amphibian embryos.
Here (see Figure 1) Cyclin is synthesized at a constant rate and triggers the
transformation of inactive (M ™) into active (M) cdc2 kinase, by enhancing the
rate of a phoshatase E1. Another kinase reverts this modification. On the other
hand, a kinase E3 elicits the transformation from the inactive (X) to the active

£ 5
2 _ 08} 408 2
i 5
- &
g8 0e : {106 6
. -
S : £
£ Al [
8z 04 A {104 8
s F e
oo b 3
s "
_99 0.2 . 0.25
0 : 1k 0
0 20 40 60 80 100

Time (min)

Fig. 3. A numerical solution of the set of differential equations (1) implementing the
model provided by A. Goldbeter, from [17]

ns T T

conc

steps

Fig. 4. The mitotic oscillator of Figure 1 computed means of an MP system evolution

94 V. Manca

(X) form of a protease that degrades cyclin, and this activation is reverted by a
phoshatase E4 (E1, Eo, E3, E4 are not indicated in the figure, v;, vq, V1, Vo, V3, V4
denote rates of the processes). The activation of edc2 kinase provides the forma-
tion of a complex known as M-phase promoting factor (or MPF'). The complex
triggers mitosis and the degradation of cyclin leads to the inactivation of the
cdc2 kinase that brings the cell back to the initial conditions in which a new di-
vision cycle can take place. In yeasts and in somatic cells the cell cycle is subject
to the control of many checkpoints, but the mechanism based on the activation-
inactivation of cde2 kinase remains the same [1]. The following equations are the
differential model of its dynamics, where ¢, m,z are the percentages of C, M, X
respectively (1 —m, 1 — x are the percentages of M, X T respectively):

de __ ., _ c _

dat = Vi Zjldl‘ I§d+c Kac

dm __ —m _ m

dt ‘/1 K1+(1—m) ‘/2K2+m (1)
dx (1—x)

— _ T
dt — ‘/3 K3+(17$) ‘/4 Ki+x

Figure 3 gives a solutions of these equations obtained by numerical integration
for some value of parameters given in [17]. The MP graph of Figure 2 was deduced
from Goldbeter’s model by means of a procedure given in [14].

Circadian rhythms are biochemical cycles evoked by variations in the expres-
sion level of genes. Such variations give rise to a surprisingly robust biological
clock, synchronized with daylight and performing a complete cycle about every
24 hours. In the model of Drosophila melanogaster, circadian rhythms involve
the oscillation of the Period (PER) and Timeless (TIM) proteins. According to

LIGHT

k
i PR, :rﬂ,)JerIML. [Tah TR, (T} TN, [T,——=
Ny Y & or
o | I i P o RN AT
F‘-‘- “‘ﬁ
< fim trAnacnplon '
! '3 fniEciear ': . "
L FERTM L PER-TIM 2 |
[[Er g 115 4 : oomplex W,
i) LT S '+
'.‘ e ranEcigtian g
. AR
k, i, P X o P e
oo mARA (W} —=FES (P} PER, [F,] PEA P —»

Fig. 5. Circadian rhythms in Drosophila, from [21]

MP Systems Approaches to Biochemical Dynamics 95

Different forms of PER and TIM

Time (h)

Fig. 6. Circadian rhythms in Drosophila: a numerical solution from [21]

this model the genes coding for PER and TIM proteins are inhibited by the
presence of a PER-TIM protein complex. This complex is constituted by the
two proteins, in the cytosol, under certain conditions, then it migrates inside
the nucleus where becomes a PER and TIM suppressor. Gene expression and
suppression result in a negative feedback network of signal transduction that
has been formalized by a non-trivial system of nonlinear differential equations,
devised by J. Leloup and A. Goldbeter [21,18]. A graphical scheme of the model
is depicted in Figure 5 and a solution of differential model, for suitable values,
is given in Figure 6. Also in this case we obtained similar solutions by using a
suitable MP system deduced from the differential model of [18].

A general relationship between MP graphs and ODE holds. In fact, MP graphs
transform naturally into ODE systems according to the mass principle, on which
differential models are based on. The amount of a product generated by a reac-
tion is proportional to the product of quantities of substrates (considered with
their multiplicity). This idea is formalized by the following definition where the
MP Notation 2 is assumed, x is the real variable ¢(X), and =’ denotes the deriva-
tive of variable x with respect to time.

Definition 4 (MP-ODE Transformation). Let G = (T,R,F) be an MP
graph. For every X € T, let x be the real variable associated to X. Then the
following is the ODE-transform of G:

z' = Z{QT(X) = he (XD} fr(@) I (o).

reR

The following classes of MP systems play an important role in the relationship
between ODE and MP systems.

96 V. Manca

Definition 3 (Non-cooperative MP System). A non-cooperative MP sys-
tem is an MP system whose rules are non-cooperative, i.e., o, € T for every rule
r of the system.

Definition 4 (Uniformly Inertial MP System). For some ¢ € R, an MP
system is ¢-uniformly inertial if the reaction map of any inertial rule of the
system has the same constant value ¢ in any possible state.

The following results can be proved as generalizations of those proved in [14].

Proposition 5. Given an ODE, we can find (in many possible manners) an
MP graph having the given ODE as its ODE-transform.

Theorem 6. The computation of a non-cooperative ¢-uniformly inertial MP
system converges, as ¢ — 00, to the solution provided by the ODE system ob-
tained by using MP-ODE transformation.

Theorem 7. For any MP system M, there exists a non-cooperative MP system
M’ having the same ODE-transform as M.

Corollary 8. Approximate solutions of autonomous ODE which describe meta-
bolic systems can be found by computing the evolution of suitable MP systems.

Figure 4 shows an MP solution, obtained by using the a non-cooperative system
having as ODE-transform just the ODE 1. The similarity with Golbeter’s solu-
tion 3 is really impressive and confirms the validity of the previous theorems, in
a very significant biological model.

4 Conclusions

In many cases we were able to translate classical differential models into MP
systems which provided similar results. Moreover, we showed that, under suitable
hypotheses, this translation can be done in a systematic way [14], based on
general relations on the two principles underlying these dynamical models: the
differential ones assuming a time partition strategy and the MP ones assuming
a mass partition strategy.

Evolutions of MP systems are discrete dynamics where important dynamical
concepts could be investigated in the specific perspective of biomolecular dy-
namics. In fact, the approach developed in [26] could suggest useful criteria in
the classification of dynamical features of biological relevance.

MP systems have several computational advantages with respect to the differ-
ential models, but their most important feature is their direct biological meaning
and their structure where the reaction level and the regulation level are clearly
interconnected but separated.

From the three principles underlying MPA and from Definition 3, it follows
that the reactivities of rules in any state are univocally related to their reaction
units and therefore to the variations of substances (from a state to the next

MP Systems Approaches to Biochemical Dynamics 97

one). It would be interesting to find procedures that, under suitable hypotheses,
could be able to recover from the knowledge of such variations the reaction units
and then the reactivities, and finally, from the reactivities in different states, the
reaction maps of rules.

The search for MP systems where these procedures can be defined, and com-
putationally treated, is the main problem to solve for a systematic application
of MP systems to complex dynamics. Without this possibility the construction
of models is a very difficult task, which can be developed only with specific
strategies depending on the particular cases.

An important aspect for future developments of our approach is the possibility
to build directly a model from the data coming from the observation of biological
phenomena. If we show that this task can be done in a systematic and efficient
way, then MP systems will give a really useful instrument in the modeling of
biological systems. The future development of theory and applications of these
systems will tell us whether, or to which extent, they will satisfy this expectation.

References

1. B. Alberts and M. Raff. FEssential Cell Biology. An Introduction to the Molecular
Biology of the Cell. Garland Science, New York, 1997.

2. F. Bernardini and M. Gheorghe. Cell communication in tissue P systems: univer-
sality results. Soft Computing, 9(9):640-649, 2005.

3. F. Bernardini and V. Manca. P systems with boundary rules. In Proc. 3rd Work-
shop on Membrane Computing, LNCS 2597, 107-118, 2002. Springer.

4. D. Besozzi and G. Ciobanu. A P system description of the sodium-potassium
pump. In G. Mauri, G. Paun, M.J. Pérez-Jiménez, G. Rozenberg, and A. Salomaa,
editors, Membrane Computing, 5th International Workshop, WMC 2004, LNCS
3365, 210223, Springer, 2005.

5. L. Bianco. Membrane Models of Biological Systems, PhD Thesis, University of
Verona, in preparation.

6. L. Bianco, F. Fontana, G. Franco, and V. Manca. P systems for biological dynamics.
In [9], 81-126. 2006.

7. L. Bianco, F. Fontana, and V. Manca. Reaction-driven membrane systems. In
L. Wang, K. Chen, and Y.-S. Ong, editors, Advances in Natural Computation,
First International Conference, ICNC 2005, Changsha, China, August 27-29, 2005,
Proceedings, Part 1I, LNCS 3611, 1155—1158. Springer, 2005.

8. L. Bianco, F. Fontana, and V. Manca. P systems with reaction maps. International
Journal of Foundations of Computer Science, 17(1):27-48, 2006.

9. G. Ciobanu, G. Pau, and M. J. Pérez-Jiménez, editors. Applications of Membrane
Computing. Springer, Berlin, Germany, 2006.

10. B.L. Clark. Stability of complex reaction networks. Adv. Chem. Phys., 43, 1-216,
1983.

11. D.A. Fell. Metabolic control analysis: a survey of its theoretical and experimental
development. Biochemistry J., 286:313-330, 1992.

12. F. Fontana, L. Bianco, and V. Manca. P systems and the modeling of biochemi-
cal oscillations. In R. Freund, G. Paun, G. Rozenberg, and A. Salomaa, editors,
6th Workshop on Membrane Computing (WMC6), LNCS 3850, 199-208, Springer,
2005.

98

13

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

V. Manca

F. Fontana and V. Manca. Predator-prey dynamics in P systems ruled by metabolic
algorithm. Submitted.

F. Fontana and V. Manca. Discrete solutions of differential equations by metabolic
P systems. Theoretical Computer Science, to appear.

G. Franco and V. Manca. A membrane system for the leukocyte selective recruit-
ment. In C. Martin-Vide, G. Mauri, G. Paun, G. Rozenberg, and A. Salomaa,
editors, Proc. Int. Workshop, WMC2003, LNCS 2933, 181-190, Springer, 2004.
R. Freund. Energy-controlled P systems. In G. Paun, G. Rozenberg, A. Salomaa,
and C. Zandron, editors, Proc. Int. Workshop WMC-CdeA 2002, LNCS 2597, 247—
260, Springer, 2003.

A Goldbeter. A minimal cascade model for the mitotic oscillator involving cyclin
and cdc2 kinase. PNAS, 88(20):9107-9111, 1991.

A Goldbeter. Computational approaches to cellular rhythms. Nature, 420:238-245,
2002.

A. Goldbeter. Biochemical Oscillations and Cellular Rhythms. Cambridge Uni-
versity Press, New York, 2004.

H. Kitano. Computational systems biology. Nature, 420:206-210, November 2002.
J.C. Leloup and A. Goldbeter. A model for circadian rhythms in Drosophila incor-
porating the formation of a complex between the PER and TIM proteins. Journal
of Biological Rhythms, 13:70-87, 1998.

M. Maeda, S. Lu, G. Shaulsky, Y. Miyazaki, H. Kuwayama, Y. Tanaka, A. Kuspa,
W. Loomis, Periodic signaling controlled by an oscillatory circuit that includes
krotein Kinases ERK2 and PK. Science, 304, 875-304, 2004.

V. Manca. Rewriting and metabolism: A logical perspective. In G. Paun, editor,
Computing with Bio-Molecules, Springer, 1998.

V. Manca and D.M. Martino. From string rewriting to logical metabolic systems.
In G. Paun and A. Salomaa, editors, Grammatical Models of Multi-Agent Systems,
Gordon and Breach Science Publishers, 1999.

V. Manca, L. Bianco, and F. Fontana. Evolutions and oscillations of P systems:
Applications to biological phenomena. In G. Mauri, G. Paun, M.J. Pérez-Jiménez,
G. Rozenberg, and A. Salomaa, editors, Membrane Computing, 5th International
Workshop, WMC 2004, LNCS 3365, 63-84, Springer, 2005.

V. Manca, G. Franco, and G. Scollo. State transition dynamics: basic concepts
and molecular computing perspectives. In M. Gheorghe, editor, Molecular Compu-
tational Models: Unconventional Approachers, Chapter 2., 32-55, Idea Group Inc.
UK, 2005.

V. Manca. Topics and problems in metabolic P systems. In G. Paun and M.J.
Pérez-Jiménez, editors, Proc. of the Fourth Brainstorming Week on Membrane
Computing (BWMCY), Sevilla, Spain, Fenix Editora, 2006.

V. Manca, L. Bianco. Biological networks in metabolic P systems. Submitted.

C. Martin-Vide, G. Paun, and G. Rozenberg. Membrane systems with carriers.
Theoretical Computer Science, 270:779-796, 2002.

A. Paun and G. Paun. The power of communication: P systems with sym-
port/antiport. New Generation Computing, 20(3):295-306, 2002.

G. Paun. Computing with membranes. J. Comput. System Sci., 61(1):108-143,
2000.

Gh. Paun. Membrane Computing. An Introduction. Springer, Berlin, 2002.

G. Paun, Y. Suzuki, and H. Tanaka. P systems with energy accounting.
Int. J. Computer Math., 78(3):343-364, 2001.

34

35.

36.

37.

38.

39.

MP Systems Approaches to Biochemical Dynamics 99

. Y. Suzuki, Y. Fujiwara, H. Tanaka, and J. Takabayashi. Artificial life applications
of a class of P systems: Abstract rewriting systems on multisets. In C.S. Calude,
G. Paun, G. Rozenberg, A. Salomaa editors, Multiset Processing, Mathematical,
Computer Science, and Molecular Computing Points of View, LNCS 2235, 299-346.
Springer-Verlag, Berlin, 2001.

Y. Suzuki and H. Tanaka. A symbolic chemical system based on an abstract
rewriting system and its behavior pattern. J. of Artificial Life and Robotics,
6:129-132, 2002.

Y. Suzuki and H. Tanaka. Modelling p53 signaling pathways by using multiset
processing. In G. Ciobanu, M.J. Pérez-Jiménez, and G. Paun, editors, Applications
of Membrane Computing, 203-214. Springer, Berlin, 2006.

L.A. Segel and I.R. Cohen, editors. Design Principles for the Immune System and
Other Distributed Autonomous Systems. Oxford University Press, 2000.

E.O. Voit. Computational Analysis of Biochemical Systems. Cambridge University
Press, 2000.

The P Systems Web Page. http://psystems.disco.unimib.it

Modeling Signal Transduction Using P Systems

Andrei Paun', Mario J. Pérez-Jiménez?, and Francisco J. Romero-Campero?

! Department of Computer Science/IfM, Louisiana Tech University
P.O. Box 10348, Ruston, LA 71272
apaun@latech.edu
2 Department of Computer Science and Artificial Intelligence, University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
{marper, fran}@us.es

Abstract. Cellular signalling pathways are fundamental to the control
and regulation of cell behavior. Understanding of biosignalling network
functions is crucial to the study of different diseases and to the design
of effective therapies. In this paper we present P systems as a feasible
computational modeling tool for cellular signalling pathways that takes
into consideration the discrete character of the components of the system
and the key role played by membranes in their functioning. We illustrate
these cellular models simulating the epidermal growth factor receptor
(EGFR) signalling cascade and the FAS—induced apoptosis using a de-
terministic strategy for the evolution of P systems.

1 Introduction

The complexity of biomolecular cell systems is currently the focus of intensive
experimental research, nevertheless the enormous amount of data about the func-
tion, activity, and interactions of such systems makes necessary the development
of models able to provide a better understanding of the dynamics and properties
of the systems.

A model is an abstraction of the real-world onto a mathematical/computa-
tional domain that highlights some key features while ignoring others that are
assumed to be not relevant. A good model should have four properties: relevance,
computability, understandability, and extensibility, [22]. A model must be rel-
evant capturing the essential properties of the phenomenon investigated, and
computable so it can allow the simulation of its dynamic behavior, as well as the
qualitative and quantitative reasoning about its properties. An understandable
model will correspond well to the informal concepts and ideas of molecular biol-
ogy. Finally, a good model should be extensible to higher levels of organizations,
like tissues, organs, organisms, etc., in which molecular systems play a key role.

P systems are an unconventional model of computation inspired by the struc-
ture and functioning of living cells which takes into consideration the discrete
character of the quantity of components of the system by using rewriting rules
on multisets of objects, that represent chemical substances, and strings, that
represent the organization of genes on the genome. The inherent randomness in

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 100-122, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Modeling Signal Transduction Using P Systems 101

biological phenomena is captured by using stochastic strategies, [20]. We believe
that P systems satisfy the above properties required for a good model.

Cellular signalling pathways are fundamental to the control and regulation
of cell behavior. Understanding of biosignalling network functions is crucial to
the study of different diseases and to the design of effective therapies. The
characterization of properties about whole—cell functions requires mathemati-
cal/computational models that quantitatively describe the relationship between
different cellular components.

Ordinary differential equations (ODEs) have been successfully used to model
kinetics of conventional macroscopic chemical reactions. The approach followed
by ODEs is referred as macroscopic chemistry since they model the average
evolution of the concentration of chemical substances across the whole system.
In this approach the change of chemical concentration over time is described for
each chemical specie, implicitly assuming that the fluctuation around the average
value of concentration is small relatively to the concentration. This assumption
of homogeneity may be reasonable in some circumstances but not in many cases
due to the internal structure and low numbers and non—uniform distributions
of certain key molecules in the cell. While differential equations models may
produce useful results under certain conditions, they provide a rather incomplete
view of what is actually happening in the cell [2].

Due to the complexity of cellular signalling pathways, large number of linked
ODEs are often necessary for a reaction kinetics model and the many interde-
pendent differential equations can be very sensitive to their initial conditions
and constants. Time delays and spatial effects (that play an important role in
pathway behavior) are difficult to include in an ODE model [9], which are also
very difficult to change and extend, because changes of network topology may
require substantial changes in most of the basic equations [3].

Recently, different agent—based approaches are being used to model a wide
variety of biological systems ([10], [12], [26]) and biological processes, including
biochemical pathways [9].

The microscopic approach considers the molecular dynamics for each single
molecule involved in the system taking into account their positions, momenta of
atoms, etc. This approach is computationally intractable because of the number
of atoms involved, the time scale and the uncertainty of initial conditions.

Our approach is referred as mesoscopic chemistry [25]. Like in the microscopic
approach one considers individual molecules like proteins, DNA and mRNA, but
ignores many molecules such as water and non-regulated parts of the cellular
machinery. Besides, the position and momenta of the molecules are not modeled,
instead one deals with the statistics of which reactions occur and how often. This
approach is more tractable than microscopic chemistry but it provides a finer
and better understanding than the macroscopic chemistry.

This paper is organized as follows. In the next section we present P systems
as a framework for the specification of models of biosignalling cascades. A de-
terministic strategy for the evolution of P systems is described in Section 3. In
Sections 4 and 5 a study of epidermal growth factor receptor (EGFR) signalling

102

A. Paun, M.J. Pérez-Jiménez, and F.J. Romero-Campero

cascade and of FAS—induced apoptotic signalling pathway are given. Finally,
conclusions are presented in the last section.

2

P Systems: A Framework to Specify Biosignalling
Cascades

In this paper we work with a variant of P systems of the form

HZ(O,L,/,L,Ml,MQ,...,Mn7R17...,Rn)7

where:

O is a finite alphabet of symbols representing objects (proteins and com-
plexes of proteins);

L is a finite alphabet of symbols representing labels for the compartments
(membranes);

1 is a membrane structure containing n > 1 membranes labeled with ele-
ments from L;

M; = (w;,1;), 1 < i < n, are pairs which represent the initial configuration
of membrane i: [; € L is its label, and w; € O* is the initial multiset.

R;, 1 < i < n, are finite sets of rules associated with the membrane ¢ which
are of the form w[v];, — «/[v'];,, where u,v,u’,v" € O* are finite multisets
of objects and [; is the label of membrane .

Next, we discuss in more detail the rules that we will use in this paper, to model
protein—protein interactions taking place in the compartmentalized structure of

the

(a)

living cell.

Transformation, complex formation and dissociation rules:

[a]i—[b]:
[a,b];—[c] where a,b,c € O, and l € L
[a]i—=[b,cli

These rules are used to specify chemical reactions taking place inside a com-
partment of type [€ L; more specifically, they represent the transformation
of a into b, the formation of a complex ¢ from the interaction of a and b, and
the dissociation of a complex a into b and c¢ respectively.

Diffusing in and out:

[ali—all
where a € O, and [l € L
alli—Tlal

We use these types of rules when chemical substances move or diffuse freely
from one compartment to another one.

Modeling Signal Transduction Using P Systems 103

(¢) Binding and debinding rules:

albli—[cl
where a,b,c € O, and l € L
[ali—=b[c]

Using rules of the first type we can specify reactions consisting in the bind-
ing of a ligand swimming in one compartment to a receptor placed on the
membrane surface of another compartment. The reverse reaction, debinding
of substance from a receptor, can be described as well using the second rule.

(d) Recruitment and releasing rules:

albli—cl]
where a,b,c € O, and [€ L
clli—albl

With these rules we represent the interaction between two chemicals in dif-
ferent compartments whereby one of them is recruited from its compartment
by a chemical on the other compartment, and then the new complex remains
in the latter compartment. In a releasing rule a complex, ¢, located in one
compartment can dissociate into @ and b, with remaining a in the same
compartment as ¢, and b being released into the other compartment.

3 P Systems Using Deterministic Waiting Times
Algorithm

In biological systems with a large number of molecules deterministic approaches
are valid since the interactions between them follows the \/n law of physics, which
states that randomness or fluctuation level in a system are inversely proportional
to the square root of the number of particles.

Next, we present an eract deterministic strategy providing a semantic to the
P systems defined before, that we will refer to as deterministic waiting times
algorithm. It is based on the fact that in vivo chemical reactions take place in
parallel in an asynchronous manner, i.e., different chemical reactions proceed
at different reaction rates and the same reaction may also have different reac-
tion rates at different times depending on the concentrations of reactants in the
region.

In the deterministic waiting time strategy, the time necessary for a reaction
to take place, called waiting time, is calculated and the rule or rules (chemical
reaction) with the shortest waiting time is/are applied, changing the number of
molecules in the respective compartments. In each step when there is a change in
the number of a molecules in a compartment, the waiting time for the reactions
“using” the changed molecule species has to be recalculated in that compartment.

By an exact deterministic method we mean that infinitesimal intervals of time
are not approximated by At as it is the case in ODEs—based model, but we will

104 A. Paun, M.J. Pérez-Jiménez, and F.J. Romero-Campero

associate a waiting time, computed in a deterministic way, to each reaction and
will use it to determine the order in which the reactions take place.

In our models biochemical reactions are used to describe the molecular inter-
actions, and reversible complex formation reactions are frequent. In what follows
we discuss how to compute mesoscopic rate constants from the macroscopic ones
used in differential equations.

Our rules model reactions of the form:

A+ B =k ©

This reversible reaction converges to an equilibrium in which the number of
chemical species A, B and C remains constant. The equilibrium constant, K.,
expresses the quantities of reactants A and B compared to complexes C' once
the equilibrium is reached; that is,

Keg = . (1)

K., can also be computed using the association k, and dissociation k4 rate

constants:)
K., = N 2
q kd ()

The association constant k, determines the speed of the association reaction.
It measures the number of chemicals A and B that form complexes C per mol
and second. For the case of regulatory proteins the association rate constant k,
can be determined experimentally. K., can also be determined experimentally
using (1) and therefore k4 can be computed using (2).

Alternatively, what it can be determined experimentally is Gibbs free energy
AG, a notion from thermodynamics which measures the effort necessary for
decomplexation. Gibbs free energy is related to the equilibrium constant K., as
follows:

-AG

K.q = exp(R. T) (3)

where R = 1.9872 cal mol~! Kelvin™! is the universal gas constant and T is the
absolute temperature at which the experiments are performed.

Therefore from (2) and (3) the dissociation constant can be determined.

The rate constants k, and k; we have dealt with up to now are macroscopic,
they do not depend on the actual number of molecules, but on concentration.
Gillespie’s algorithm and thus our approach uses mesoscopic rate constants re-
ferring to the actual number of molecules and they are determined from their
macroscopic counterparts as follows:

kq

:AV7 Cd:kd

Ca

where A = 6.023-10%% is Avogadro’s number and V is the cell volume. Note that
we assume the cell volume to be constant while ignoring cell growth.

Modeling Signal Transduction Using P Systems 105

Given a P system, in this strategy each rule r (representing a chemical reac-
tion) in each membrane m has associated a velocity, v,, obtained by multiplying
the mesoscopic rate constant ¢, by the multiplicities of the reactants according
to the mass action law. Then we compute the waiting time for the first execution
of the rule r as 7. = vlr and return the triple (7,7, m).

Next, we give a detailed description of the deterministic waiting times algo-

rithm providing the semantic of our P systems—based model:

e Initialization

* set time of the simulation ¢ = 0;

* for every rule r associated with a membrane m in p compute the triple
(4,7, m) by using the procedure described before; construct a list con-
taining all such triples;

* sort the list of triple (7., 7, m) according to 7, (in an ascendent order);

e Iteration

* extract the first triple, (7,7, m) from the list (if there are several rules
with the minimum waiting times, then we select all these rules);

* set time of the simulation t =t 4+ 7;

* update the waiting time for the rest of the triples in the list by subtract-
ing 7;

* apply the rule(s) r only once updating the multiplicities of objects in the
membranes affected by the application of the rule;

* for each membrane m’ affected by the application of the rule(s) r, re-
calculate the waiting times of the rules which are in m/;

* for each such rule, compare the new waiting times with the existing ones,
and keep the smallest one among the two;

* sort the list of the new triples according to the waiting time;

* iterate the process.

e Termination

* Repeat the process until the time of the simulation t reaches or exceeds

a preset maximal time of simulation.

Note that in this algorithm every rule in each membrane has a waiting time
computed in a deterministic way that is used to determine the order in which
the rules are executed. It is also worth mentioning that in this method the time
step varies across the evolution of the system and it is computed in each step
depending on the current state of the system.

This strategy has been implemented using Scilab, a scientific software package
for numerical computations providing a powerful open computing environment
for engineering and scientific applications [31]. This tool is available from [32].

4 Modeling EGFR Signalling

The epidermal growth factor receptor (EGFR) is provably the best understood
receptor system, and computational models have played an important role in its
elucidation. It seems clear that cells process the information before passing it to

106 A. Paun, M.J. Pérez-Jiménez, and F.J. Romero-Campero

the nucleus. The many different control points in the EGFR signalling pathway
make it an excellent system for investigating how cells process contextual in-
formation. Computational models can play a crucial role for understanding this
process [29].

In this section we study the EGFR signalling cascade where the deterministic
waiting times algorithm is suitable for describing its evolution.

The epidermal growth factor receptor (EGFR) was the first found to have
tyrosine—kinase activity and has been used in pioneering studies of biological
processes such as receptor—mediated endocytosis, oncogenesis, mitogen—activat-
ed—protein—kinase (MAPK) signalling pathways, etc. [29].

Binding of the epidermal growth factor (EGF) to the extracellular domain of
EGFR induces receptor dimerization and autophosphorylation of intracellular
domains. Then a multitude of proteins are recruited starting a complex signalling
cascade and the receptor follows a process of internalization, ubiquitination, and
degradation in endosomals.

In our model we consider two marginal pathways and two principal pathways
starting from the phosphorylated receptor.

In the first marginal pathway phospholipase C-y (PLC,) binds to the phos-
pholyrated receptor, then it is phosphorylated (PLC?) and released into the cy-
toplasm where it can be translocated to the cell membrane or desphosphorylated.
In the second marginal pathway the protein PI3K binds to the phospholyrated
receptor, then it is phosphorylated (PI3K*) and released into the cytoplasm
where it regulates several proteins that we do not include in our model.

Both principal pathways lead to activation of Ras-GTP. The first pathway
does not depend on the concentration of the Src homology and collagen domain
protein (Shc). This pathway consists of a cycle where the proteins growth factor
receptor-binding protein 2 (Grb2) and Son of Sevenless homolog protein (SOS)
bind to the phosphorylated receptor. Later the complex Grb2-SOS is released in
the cytoplasm where it dissociates into Grb2 and SOS.

In the other main pathway Shc plays a key role, it binds to the receptor
and it is phosphorylated. Then either Shc* is released in the cytoplasm or the
proteins Grb2 and SOS binds to the receptor yielding a four protein complex
(EGFR-EGF2*-Shc*-Grb2-SOS). Subsequently, this complex dissociates into the
complexes Shc*-Grb2-SOS, Shc*-Grb2 and Grb2-SOS which in turn can also
dissociate to produce the proteins Shc*, Grb2 and SOS.

Finally, Ras-GTP is activated by these two pathways and in turn it stimu-
lates the Mitogen Activated Protein (MAP) kinase cascade by phosphorylating
the proteins Raf, MEK and ERK. Subsequently, phosphorylated ERK regulates
several cellular proteins and nuclear transcription factors that we do not include
in our model.

There exist cross-talks between different parts and cycles of the signalling
cascade which suggests a strong robustness of the system.

In Figure 1 it is shown a detailed graphical representation of the signalling
pathway that we model in this paper.

Modeling Signal Transduction Using P Systems 107

Next, we present a P system—based model of the biosignalling cascade de-
scribed above.

Our model consists of more that 60 proteins and complexes of proteins and
160 chemical reactions. We will not give all the details of the model. A complete
description of IIpgr with some supplementary information is available from the
web page [32]. In what follows we give an outline of our model.

Let us consider the P system

HEGF = (07 {67 S, C}a M, (w17 6)7 (w27 5)7 (’UJ3,C),R€7RS,RC),

where:

e Alphabet: In the alphabet O we represent all the proteins and complexes of
proteins that take part in the signalling cascade simulated. Some of the objects
from the alphabet and the chemical compounds that they represent are listed
below.

Object Protein or Complex
EGF Epidermal Growth Factor
EGFR Epidermal Growth Factor Receptor
EGFR-EGF> Dimerisated Receptor

EGFR-EGF3-She EGFR-EGF3 and Shc complex

MEK Mitogenic External Regulated Kinase
ERK External Regulated Kinase

e Membrane Structure: In the EGFR signalling cascade there are three rel-
evant regions, namely the environment, the cell surface and the cytoplasm. We
represent them in the membrane structure as the membranes labeled with e for
the environment, s for the cell surface, and ¢ for the cytoplasm. The skin of the
structure is the environment, the cell surface is the son of the environment and
the father of the cytoplasm.

e Initial Multisets: In the initial multisets we represent the initial number of
molecules of the chemical substances in the environment, the cell surface, and
the cytoplasm. These estimations has been obtained from [13,24].

We = {EGF2000O}
ws = {EGFR?»YY Ras-G D P2"000}
we = {She?000 PLCIS000. P3 5000 GO G000 (28000 7 pl0000 1 pls000,
T P35000 T p12500 R 8000 1 40000 pR fC40000 pSO00 pS000 "p30000)

e Rules: Using rules we model the 160 chemical reactions which form the sig-
nalling cascade.

As it can be seen in the initial multisets specified before, in the system of
the EGFR signalling cascade the number of molecules is quite large, hence as a
consequence of the y/n law important fluctuations and stochastic behavior are

108

A. Paun,

EGF

A

M.J. Pérez-Jiménez, and F.J. Romero-Campero

EGFR EGF.

[Internalization and
degradation

EGER EGF

Internalization and
degradation

2% She

EGFR EGF2* PI.C EGFR EGF2* PI3K

EGIR EGE2* PLC*
FGF‘R EGF2* PI3K*

EGFR EGF2* She*

EGEFR EGE2* She*

!

FGFR EGF2* She* Gyb]

.

EGER EGE2* She Grb2

PCL ¢
PCT* PI3K

PI3K*

Rl

PCL TP2 <— PCL *1P2
PI3K TP4 <4— PI3K)
TP3

She & She TP3 Grb2 /

S0S

4
|¢——>» Shc* ? She* TP3

Grb2 Grb2 SOS «—» EGFR
TP3

She*

Grb2 SOS MEK PP ERK P

x She* Grb2 \

S0S ERK PP
‘\1 MEK PP
ERK P

530S ¢—— She* Grb2 SOS ERK PP P3

MEK PP P2 MEK PP ERK
TRRe D
MEK kv
MEK PP

MEK P
cytoplasm

cell surface l /’ Raf* MEK P
Raf* MEK

Raf*
Ras GTP*

Ras GTP Raf

Naf
Ras GTP

Ras GDP

EGFR&GFR EGF- GFR EGF2 «—» EGFR EGF2*<4— EGFR EGF2* TPL— EGFR EGF2 TP1

EGFR EGF2* Grh2

2% EGF2* Grb2 S

Fig. 1. EGFR Signalling Cascade

7

Modeling Signal Transduction Using P Systems 109

not expected in the evolution of the system. Because of this we have chosen the
deterministic waiting times algorithm as the strategy for the evolution of the P
system HEGF~

Next, we show two examples of rules of the system.

The set of rules associated with the environment, R, consists only of one rule
r which models the binding of the signal, EGF, to the receptor EGFR.

EGF[EGFR], — [EGF-EGFR], ¢,

The meaning of the previous rule is the following: the object EGF in the mem-
brane containing the membrane with label s (the environment), and the object
EGFR inside the membrane with label s (the cell surface) are replaced with the
object EFGFR-EGF in the membrane with label s; this object represents the
complex receptor-signal on the cell surface. We associate the mesoscopic rate
constant ¢, which measures the affinity between the signal and the receptor.

The deterministic waiting times algorithm is used in the evolution of the
system and the waiting time associated to this rule will be computed using the
next formula:

1

~ ¢, -|EGF|-|EGFR|
One example from the set of rules R, associated with the cell surface is the

rule 7’ concerning to the dimerisation of the receptor, that is the formation of a
complex consisting of two receptors:

T

[EGFR, EGFR)s — [EGFRy]s ,c

When this rule 7’ is executed two objects FGF R representing receptors are
replaced with one object EGF Ry, representing a complex formed with two re-
ceptors, in the membrane with label s, the cell surface. The mesoscopic rate
constant ¢, is used to computed the waiting time:

1
~ ¢ - |EGFR]?

Tyt

4.1 Results and Discussions

Using Scilab we ran some experiments; in what follows we present some of the
results obtained.

In Figure 2 it is depicted the evolution of the number of autophosphorylated
receptors and in Figure 3 the number of doubly phosphorylated MEK (Mito-
gen External Kinase), one of the target proteins of the signalling cascade that
regulates some nuclear transcription factors involved in the cell division.

Note that the activation of the receptor is very fast reaching its maximum
within the first 5 seconds and then it decays fast to very low levels; on the other
hand the number of doubly phosphorylated MEK is more sustained around 3
nM. These results agree well with empirical observations, see [13,24].

110 A. Paun, M.J. Pérez-Jiménez, and F.J. Romero-Campero

Molecules ("M) Receptor Autophosphorylation

0.24
0204 ||
0.16
ot | |

0.08

\
0.044
‘ -

| —]
|
L time (s)

T T T
0 10 20 30 40 50 60

Fig. 2. Autophosphorylated EGFR evolution

Molecules ("M) MEK phosphorylation

time (s)

T T T T T
0 40 80 120 160 200 240

Fig. 3. Doubly phosphorylated MEK evolution

In tumors it has been reported an over expression of EGF signals in the
environment and of EGFR receptors on the cell surface of cancerous cells. Here
we investigate the effect of different EGF concentrations and number of receptors
on the signalling cascade.

First, we study the effect on the evolution of the number of autophospho-
rylated receptors and doubly phosphorylated MEK of a range of signals, EGF,
from 100 nM to 2000 nM.

In Figure 4, it can be seen that the receptor autophosphorylation is clearly
concentration dependent showing different peaks for different number of signals
in the environment. According to the variance in the receptor activation it is
intuitive to expect different cell responses to different EGF concentrations. Here

we will see that this is not the case.

Molecules ("M)

0.

Modeling Signal Transduction Using P Systems 111

06|

|
o.sf‘
0.4
0.3 ‘
o2 /|

0.1+

2000nM

50

60

time (s)

Fig. 4. Receptor autophosphorylation for different environmental EGF concentrations

Molecules (nM)

T

40
100nM
200nM
300nM

el

T
160
400nM
1000nM
2000nM

T
200

240

time (s)

Fig. 5. MEK phosphorylation for different environmental EGF concentrations

From Figure 5 we can observe that the number of doubly phosphorylated
MEK does not depend on the number of signals in the environment. That is, the
perturbation of EGF level in the environment has no impact on MEK activation.
So, the system is not sensitive to increases in EGF level in the environment (Sen-
sitivity analysis is a mathematical technique term associated with the use of a
computational model to predict the effects of the variation of a single component

in the model).

This shows the surprising robustness of the signalling cascade with regard to
the number of signals from outside due to EGF concentration. The signal is either
attenuated or amplified to get the same concentration of one of the most relevant
kinases in the signalling cascade, MEK. Note that after 100 seconds, when the

112 A. Paun, M.J. Pérez-Jiménez, and F.J. Romero-Campero

response gets sustained, the lines representing the response to different external
EGF concentrations are identical.

Now we analyze the effect on the dynamics of the signalling cascade of different
numbers of receptors on the cell surface.

In Figure 6, it is shown the evolution of the number of doubly phosphorylated
MEK when there is 100 nM and 1000 nM of receptors on the cell surface. Note
that now the response is considerably different; the number of activated MEK
is greater when there is an over expression of receptors on the cell surface. As
a consequence of this high number of activated MEK the cells will undergo an
uncontrolled process of proliferation. Thus, Figure 6 shows the sensitivity of
MEK activation to increases in EGFR level on the cell surface.

Molecules ("M)

T T T T time (s)
40 80 120 160 200

100nM

1000nM

o

Fig. 6. MEK phosphorylation for different number of receptors

The key role played by the over expression of EGFR on the uncontrolled
growth of tumors has been reported before, and, as a consequence of this, EGFR
is one of the main biological targets for the development of novel and successful
therapies against cancer and continue to be a source of discoveries about the cell
signalling mechanisms involved in development, tissue homeostasis, and disease
[28,14].

There are different strategies to inhibit the over expression of EGFR on the cell
surface but the most developed ones are the monoclonal antibodies (that bind
the external domain of the receptor competing against their natural ligands),
and the molecules with low molecular weight (that inhibit the tyrosine—kinase
activity of the receptor at the intracellular level).

Finally, we stress that for this system we have used a deterministic approach
obtaining results that agree well with experimental data. This is not always
the case, for instance in [20] a system is shown (the Quorum Sensing system in
Vibrio Fischeri) where a stochastic approach is necessary to describe properly
its behavior.

Modeling Signal Transduction Using P Systems 113

5 Modelling FAS—Apoptosis

There are basically two mechanisms of cell death, necrosis and apoptosis. Necro-
sis is a form of cell death that usually occurs when cells are damaged by injury.
A disruption of the cell membrane is produced and intracellular materials are
released. In contrast to necrosis, apoptosis is carried out in an ordered sequence
of events that culminates in the suicide of the cell, and without releasing intra-
cellular materials from the dying cells.

The term apoptosis (also known as programmed cell death) was coined by Kerr,
Wyllie and Currie [8] as a means of distinguishing a morphologically distinctive
form of cell death which was associated with normal physiology.

Apoptosis occurs during organ development, it plays an important role in cel-
lular homeostasis [11], and it is a cellular response to a cellular insult that starts a
cascade of apoptotic signals, both intracellular and extracellular, which converge
on the activation of a group of apoptotic—specific proteases called caspases. The
apoptotic mechanism include condensation of cell contents, DNA fragmentation
into nucleosomal fragments, nuclear membrane breakdown, and the formation
of apoptotic bodies that are small membrane-bound vesicles phagocytosed by
neighboring cells [15]. Apoptosis protects the rest of the organism from a poten-
tially harmful agent and disregulation of apoptosis can contribute to the devel-
opment of autoimmune diseases and cancers. Apoptosis can also be induced by
anticancer drugs, group factor deprivation, and irradiation.

The family of proteases that mediates apoptosis is divided into two subgroups.
The first group consists of caspase 8, caspase 9, and caspase 10, and they func-
tion as initiators of the cell death process. The second group contains caspase 3,
caspase 6, and caspase 7, and they work as effectors. The other effector molecule
in apoptosis is Apaf-1, which, together with cytochrome c, stimulates the pro-
cessing of pro-caspase 9 to the mature enzyme.

The other regulators of apoptosis are the Bcl2 family members, divided into
three subgroups based on their structure. Members of the first subgroup, rep-
resented by Bcl2 and Bcl-xL, have an anti-apoptotic function. The second sub-
group, represented by Bax and Bak, and the third subgroup, represented by Bid
and Bad, are pro-apoptotic molecules.

Apoptotic death can be triggered by a wide variety of stimuli. Among the
more studied death stimuli are DNA damage which in many cells leads to apop-
totic death via a pathway dependent on p53, and the signalling pathways for
FAS-induced apoptosis that was shown to be one of the most relevant processes
for understanding and combating many forms of human diseases such as can-
cer, neurodegenerative diseases (Parkinson’s disease, Alzheimer, etc.), AIDS and
ischemic stroke.

Fas (also called CD95 or APO-1) is a cell surface receptor protein with an
extracellular region, one transmembrane domain, and an intracellular region. Fas
belongs to the tumor necrosis factor/nerve growth factor (TNT/NGF) cytokine
receptor family. Activation of Fas through binding to its ligands, induces apop-
tosis in the Fas bearing cell. Fas induced—apoptosis starts from the Fas ligand

114 A. Paun, M.J. Pérez-Jiménez, and F.J. Romero-Campero

,:L TNF

é misFasL

Typel
Pathway J_
-

——p Cytochromec "o =
- \
EETTEEE Apaf-1

‘) — Bcl2

AlF dATP

Caspase 3 4 Caspase 9

: ¥
APOPTOSI 4/ — Cuspase2

Fig. 7. FAS signalling pathways, from [1]

binding to Fas receptors and ends in the fragmentation of genomic DNA, which
is used as a hallmark of apoptosis.

Fas ligands usually exist as trimers and bind and activate their receptors by
inducing receptor trimerisation. This creates a clustering of Fas that is necessary
for signalling. In its intracellular region, Fas contains a conserved sequence called
a death domain. Activated receptors recruit adaptor molecules (such as FADD,
Fas—associating protein with death domain) which interacts with the death do-
main on the Fas receptor and recruit procaspase 8 to the receptor complex,
where it undergoes autocatalytic activation cleaving and releasing active caspase
8 molecules intracellularly. Activated caspase 8 can activate caspase 3 through
two different pathways that have been identified by Scaffidi et al. [23], and are re-
ferred to as type I (death receptor pathway) and type II (mitochondrial pathway),
where caspases play a crucial role for both the initiation and execution apoptosis.

The pathways diverge after activation of initiator caspases and converge at the
end by activating executor caspases. In the type I pathway, initiator caspase (cas-
pase 8) cleaves procaspase 3 directly and activates executor caspase (caspase 3).

In the type II pathway, a more complicated cascade is activated involving the
disruption of mitochondrial membrane potential and it is mediated by Bcl2 fam-
ily proteins that regulate the passage of small molecules which activate caspase
cascades through the mitochondrial transition pore. More specifically (see Fig-
ure 8), caspase 8 cleaves Bid (Bcl2 interacting protein) and its COOH-terminal
part translocates to mitochondria where it triggers cytochrome c release. The
released cytochrome ¢ bind to Apaf-1 (apoplectic protease activating factor)

Modeling Signal Transduction Using P Systems 115

ﬁ Faa |igandint)
— 1 cal | membrans

= |

L '-mm
Beo. Bl Elm
Procsspase-8 (s5) F—Hal-E Bal-K| AATR/ATE

2

'3"1 L Jﬂ:‘tﬂﬂ-u i)
) - | _:n_J_,_ﬂ:_"ﬂﬂﬂ*

r S Nitochoedrion (816)

Bid @ terminal
1

Conpane-4 Frocsspese-3 (e} ﬂ.ﬂ-
“l—= . ai 59
it ! @ oy O 0
) . — ¢ °
-. Processpese— (a1}
F . o= —
m' Clsaved DFF45
(=33, 34, 35)

mucleus = =
fﬂl—ﬁ;f DFFa0 Jb [? a

‘DMA fragsentation

Fig. 8. Details of FAS signalling pathways, from [15]

togegther with dATP and procaspase 9 and activate caspase 9. The caspase 9
cleaves procaspase 3 and activates caspase 3.

The executor caspase 3 cleaves DFF (DNA fragmentation factor) in a het-
erodimeric factor of DFF40 and DFF45. Cleaved DFF45 dissociates from DFF40,

116 A. Paun, M.J. Pérez-Jiménez, and F.J. Romero-Campero

inducing oligomerisation of DFF40. The active DFF40 oligomer causes the in-
ternucleosomal DNA fragmentation.

Despite many molecular components of these apoptotic pathways have been
identified, a better understanding of how they work together into a consistent
network is necessary. A way to understand complex biological processes, in gen-
eral, and the complex signalling behaviour of these pathways, in particular, is by
modelling them in a computational framework and simulating them in electronic
computers.

In [6] the two pathways activated by FAS starting with the stimulation of
FASL (FAS ligand) until the activation of the effector caspase 3, have been
modelled using ordinary differential equations in which biochemical reactions
where used to describe molecular interactions.

In this section we present a P system using a deterministic waiting times algo-
rithm for modelling FAS induced apoptosis, implementing all the rules described
in [6] for both pathways.

Our model consists of 53 proteins and complexes of proteins and 99 chemical
reactions. We will not give all the details of the model. A complete description
of Ilp s with some supplementary information can be found in the web page
[32]. In what follows we give an outline of our model.

Let us consider the P system

HFAS = (07 {67 S, C, m}a M, (wlv 6), (va S)v (UJ3, C)7 (w47m)7ReaRSaRC7Rm)

where:

e Alphabet: In the alphabet O we represent all the proteins and complexes of
proteins that take part in the signalling cascade simulated. Some of the objects
from the alphabet and the chemical compounds that they represent are listed
below.

Object Protein or Complex
FAS Fas protein
FASL Fas Ligand

FADD Fas—associating protein with death domain

Apaf Apoptotic protease activating factor

Smac Second mitochondria—derived activator of caspase
XIAP X-linked inhibitor of apoptosis protein

e Membrane Structure: In the FAS signalling pathways there are four rele-
vant regions, namely the environment, the cell surface, the cytoplasm and the
mitochondria. We represent them in the membrane structure as the membranes
labeled with: e for the environment, s for the cell surface, ¢ for the cytoplasm,
and m for the mitochondria. The skin of the structure is the environment, the
cell surface is the son of the environment, the father of the cytoplasm, and the
grandfather of the mitochondria.

Modeling Signal Transduction Using P Systems 117

e Initial Multisets: In the initial multisets we represent the initial number of
molecules of the chemical substances in the environment, the cell surface, the
cytoplasm, the mitochondria. These estimations has been obtained from [6].

We = {FASL12500}

w, = {FAS92}

we = {FADD10040 CASP820074 FLIP48786 CASP3120460 Bid15057
Bax501897)(]'14‘13180697 Apaf602307 CASP912046}

Wy = {Sma660230, Cyto.c60230, 301245172}

e Rules: Through the rules we model the 99 chemical reactions which form the
signalling pathways. The rules can be found in [5] and they are described in our
model as in the case of the system Il ggpr (with different rules in the alternative
cases of type II pathway in next subsection).

The set of rules associated with the environment, R., consists only of one rule
r1 which models the binding of the FAS ligand to the receptor FAS.

FASL [FAS |, — [FASC], ,cr,

The meaning of the previous rule is the following: the object FFASL in the
membrane containing the membrane with label s (the environment), and the
object FAS inside the membrane with label s (the cell surface) are replaced
with the object FASC' in the membrane with label s; this object represents the
complex receptor-signal on the cell surface. We associate the kinetic constant kq,
which measures the affinity between the signal and the receptor.

The deterministic waiting times algorithm is used in the evolution of the
system and the waiting time associated to this rule will be computed using the
next formula:

1
Try =

¢, -|EGF|-|EGFR)|

5.1 Results and Discussions

We implemented in Java a preliminary simulator for the P system. It accepts as
input an SBML (Systems Biology Markup Language) file containing the rules
to be simulated and initial concentrations for the molecules in the system.

We compared our results with both the experimental data and with the ODEs
simulation data reported in [6].

One of the major proteins in the pathway, caspase 3 was compared to the
experimental data. In the ODEs simulation, caspase 3 was activated at 4 hours,
and it was considered close to the experimental results where it was obtained
that it activated at 6 hours (see Figure 9).

The same pathway is modeled in the membrane computing framework using
the same reactions and initial conditions. The caspase 3 activation dynamics is
studied when Bcl2 is at baseline value. Caspase 3 is activated in our simulator

118 A. Paun, M.J. Pérez-Jiménez, and F.J. Romero-Campero

z 1 200 4
= —
2 45l -® Control z Bel2 at baseline value
p -© Bol2 KD @ 1501 Bel2 decrease 10X
@ 084 & —— BelZ decreasa 100X
& fE'v 100 4
£ 044
B g
5 o 50 4
g 024 -
3 C
0 v v a r T 1
. 0 2 4] 8 0 2 4]]
Time (howr) Time {hour)
200 T T
= Bcl-2 control (Bazeline value)
180
160+ i
E 140} 1
ré-m- _
< 100
)
E 80 4
s eof i
400 .
20
v} L 1 1 1 .
0 1 2 3 4 5 5 7 8 9

Time [Hour|

Fig. 9. Comparison between experimental data (top left, from [6]), previous ODE sim-
ulation data (top right, [6]) and the P system simulation data (down)

after about 7 hours which is a very good approximation of the experimental data
and it improves the results obtained in the ODEs simulation [6].

There are cells (as thymocytes and fibroblasts) which are not sensitive to Bcl2
over expression as described in [23]. In these cells caspase 8 directly activates
caspase 3.

Scaffidi et al. has suggested in [23] that the type of pathway activated by
Fas is chosen based on the concentration of caspase 8 generated in active form
following FASL binding. If the concentration of activated caspase 8 is high, then
the caspase 3 is activated directly, on the other hand, if the concentration of
activated caspase 8 is low, the type II pathway is chosen so that the system is
amplifying the death signal through the mitochondria to be able to induce the
cell death.

To check this hypothesis, the active caspase 8 formation is increased by hav-
ing the initial concentration of caspase 8 set to a value 20 times greater than its
baseline value while everything else was kept the same in the system. We per-
formed the same simulation with the increase in caspase 8 initial concentration,
and this resulted in faster caspase 3 activation also in our simulation; this agrees
well with the results obtained in [23].

Modeling Signal Transduction Using P Systems 119

Bcl-2 binds Bax whan CASP-3 incraged hy 20 X 200
e T
—EBckZ Base Ine
LA —— BrkZircresad by 100X g
160 \‘ = 150
£ 14 2 — Bcl-2 at baseline value
1]
£ 120 8 — Bcl-2 increass 100X
3 100
; 100 F=
o
Ea g
e ;' 50
40 c
2o 0
T 1 2 3] 5 a 7 5 g 0 2 4 6 8
Thma [hours} Time (hour)

Fig. 10. Left — the P system simulation, right — the ODE simulation, from [6], for the
change in caspase 8 initial concentration

The Bcl2 concentration is also increased 100 times to test the sensitivity of
caspase 3 activation to Bcl2. Figure 10 shows that the caspase 3 activation is not
sensitive to increases in Bcl2 concentration, when pathway of type I is chosen.

Bcl2 is known to block the mitochondrial pathway; however, it is not clear
the mechanism through which Bcl2 can block the pathway of type II. Next, we
analyze the caspase 3 activation kinetics in this type of pathway by considering
different mechanisms to block the mitochondrial pathway suggested in [4], [16]
and [27]: Bcl2 might bind with (a) Bax, (b) Bid, (c¢) tBid, or (d) bind to both
Bax and tBid.

We design four different P systems having the rules:

— 7r1,...,795,T96, Toy for modeling the case (a).
— T1,...,795, Tog, "oy for modeling the case (b).
— T1,...,T95,T4g, "7 for modeling the case (c).
— r1,...,T97,T9s, o9 for modeling the case (d).

All the other rules remain the same for all the cases (see [5] for details).

Let us note that this example shows the modularity of P systems—based model:
small behavioral changes in the biosignalling cascade causes small changes in the
designs of the P systems.

The dynamics of caspase 3 activation is studied by varying the Bcl2 concen-
tration 10 times or 100 times the baseline value. It was concluded that Bcl2
binding to both Bax and tBid is the most efficient mechanism for the pathway
in comparison with the results obtained for the cases (a), (b) or (c). The same
conclusions were obtained also after using our simulator for all the previous
changes in the pathway.

Figure 11 shows only the case (d) as a comparison between the ODE simulator
and the P system simulator. It can seen the sensitivity of the caspase 3 activation
to increases in Bcl2 level, when Bcl2 is able to bind to both Bax and tBid, and
when mitochondrial pathway is selected.

Next table presents a summary about the sensitivity analysis of caspase 3
activation to over expression of Bcl2 in function of the pathway selected.

120 A. Paun, M.J. Pérez-Jiménez, and F.J. Romero-Campero

Bel-2 binding to Bax and tBid

— Bci2 at baseline value
— Bci2 increase 10X
— Bci2 increase 100X

HeliZ handing to Bai

8

—— B:l-Z amszine
- © B2 i by 105 T
S, === B2 ncreased oy 100

2

a2
g1

Full Length Casp3 {nM)
2

E T,
8 1 R T
%
3 -
0
b , , - 1] 2 L] L] 8
L 1 z 3 L [7 [3 Time (hour)

Fig. 11. Left — the P system simulation, right — the ODE simulation, from [6]

Activation Caspase 3
(with over expression of Bcl2)
Type I (death receptor pathway) Insensitivity
Type II (mitochondrial pathway) Sensitivity

6 Conclusions

In this paper we have presented P systems as a new computational modeling
tool to study the dynamic behavior of integrated signalling systems through a
mesoscopic chemistry approach.

P systems are also a general specification of the biological phenomena that can
be evolved using different strategies/algorithms. A deterministic waiting times
algorithm has been introduced, and it is based on the fact that in vivo chemical
reactions take place in parallel and in an asynchronous manner.

That strategy has been illustrated with the simulation of two relevant biolog-
ical phenomena: the EGFR signalling cascade and the signalling pathways for
FAS-induced apoptosis. In the line of [29] we think that the success of using
P systems—based model for simulating biosignalling cascades can be a guide to
combining models and experiments to understand complex biological processes
as integrated systems.

Our results show a good correlation with the experimental data reported in the
literature and with simulators based on ODEs. So, they support the reliability of
P systems as computational modeling tools to produce postdiction, and perhaps
they will be able to produce plausible predictions.

Acknowledgement

The author wishes to acknowledge the support of the project TIN2005-09345-
C04-01 of the Ministerio de Educacién y Ciencia of Spain, co—financed by FEDER,
funds, and of the project of Excellence TIC 581 of the Junta de Andalucia.

Modeling Signal Transduction Using P Systems 121

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

Alimonti, J.B., Ball, T.B., Fowke, K.R. Mechanisms of CD4+ T lymphocyte cell
death in human immunodeficiency virus infection and AIDS. Journal of General
Virology, 84 (2003), 1649-1661.

. Bhalla, U.S., Iyengar, R., Emergent properties of networks of biological signaling

pathways. Science, 283 (1999), 381-387.

Blossey, R., Cardelli, L., Phillips, A. A compositional approach to the stochastic
dynamics of gene networks. Transactions on Computational Systems Biology, IV,
Lecture Notes in Computer Science, 3939 (2006), 99-122.

. Cheng, E.H., Wei, M.C., Weiler, S., Flavell, R.A., Mak, T.W., Lindsten, T., Ko-

rsmeyer, S.J. BCL-2, BCL-XL sequester BH3 domain-only molecules preventing
BAX- and BAK-mediated mitochondrial apoptosis. Molecular Cell, 8 (2001), 705
711.

Cheruku, S., A. Paun, F.J. Romero, M.J. Pérez—Jiménez, O.H. Ibarra. Simulating
FAS-induced apoptosis by using P systems. Proceedings of the First International
Conference on Bio—Inspired Computing: Theory and Applications, Wuhan, China,
September, 18-22, 2006.

Hua, F., Cornejo, M., Cardone, M., Stokes, C., Lauffenburger, D. Effects of Bcl-
2 levels on FAS signaling-induced caspase-3 activation: Molecular genetic tests of
computational model predictions. The Journal of Immunology, 175, 2 (2005), 985
995 and correction 175, 9 (2005), 6235-6237.

Ibarra, O.H., Pdun, A. Counting time in computing with cells. Proceedings of DNA
Based Computing, DNA11, London, Ontario, 25-36, 2005.

Kerr, J.F., Wyllie, A.H., Currie, A.R. Apoptosis: a basic biological phenomenon
with wide-ranging implications in tissue kinetics. British Journal Cancer, 26
(1972), 239.

Pogson, M., Smallwood, R., Qwarnstrom, E., Holcombe, Formal agent—based of
intracellular chemical interactions. BioSystems, 85, 1 (2006), 37-45.

Holcombe, M., Gheorghe, M., Talbot, N. A hybrid machine model of rice blast
fungus, Magnaphorte Grisea. BioSystems, 68, 2-3 (2003), 223-228.

Jaatela, M. Multiple cell death pathways as regulators of tumour initiation and
progression. Oncogene, 23 (2004), 2746-2756.

Jackson, D., Holcombe, M., Ratnieks, F. Trail geometry gives polarity to ant for-
aging networks. Nature 432 (2004), 907-909.

Moehren G., Markevich, N., Demin, O., Kiyatkin, A., Goryanin, 1., Hoek, J.B.,
Kholodenko, B.N. Temperature dependence of the epidermal growth factor receptor
signaling network can be accounted for by a kinetic model, Biochemistry 41 (2002),
306-320.

Moghal, N., Sternberg, P.W. Multiple positive and negative regulators of signaling
by the EGFR receptor. Curr. Opin. Cell Biology, 11 (1999), 190-196.

Nijhawan, D., Honarpour, N., Wang, X. Apotosis in neural development and dis-
ease. Annual Reviews Neuroscience, 23 (2000), 73-87.

Oltavi, Z.N., Milliman, C.L., Korsmeyer, S.J. Bcl-2 heterodimerizes in vivo with
a conserved homolog, Bax, that accelerates programmed cell death. Cell, 74, 4
(1993), 609-619.

Gh. Paun, Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108-143, and Turku Center for Computer Science-TUCS Report Nr.
208, 1998.

Gh. Paun, Membrane Computing. An Introduction. Springer-Verlag, Berlin, 2002.

122

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.
31.
32.

A. Paun, M.J. Pérez-Jiménez, and F.J. Romero-Campero

Gh. Paun, G. Rozenberg, A guide to membrane computing. Theoretical Computer
Science, 287 (2002), 73-100.

Pérez-Jiménez, M.J., Romero-Campero, F.J. P systems, a new computationl mod-
elling tool for systems biology, Transactions on Computational Systems Biology
VI, LNBI 4220, 2006, 176-197.

Pérez-Jiménez, M.J., Romero-Campero, F.J. A study of the robustness of the
EGFR signalling cascade using continuous membrane systems. Lecture Notes in
Computer Science, 3561 (2005), 268 — 278.

Regev, A., Shapiro, E. (2004) The m-calculus as an abstraction for biomolecular
systems. In G. Ciobanu and G. Rozenberg, editors, Modelling in Molecular Biology,
Springer Berlin.

Scaffidi, C., Fulda. S., Srinivasan, A., Friesen, C., Li, F., Tomaselli, K.J., Debatin,
K.M., Krammer, P.H., Peter, M.E. Two CD95 (APO-1/Fas) signaling pathways.
The Embo Journal, 17 (1998), 1675-1687.

Schoeberl, B., Eichler—Jonsson, C., Gilles, E.D., Muller, G. Computational model-
ing of the dynamics of the MAP kinase cascade activated by surface and internal-
ized EGF receptors, Nature Biotechnology, 20, 4 (2002), 370-375.

Van Kampen, N.G. Stochastics Processes in Physics and Chemistry, Elsevier Sci-
ence B.V., Amsterdam, 1992.

Walker, D.C., Southgate, J., Hill, G., Holcombe, M., Hose, D.R.., Wood S.M., Mac-
Neil, S., Smallwood, R.H. The epitheliome: modelling the social behaviour of cells.
BioSystems, 76, 1-3 (2004), 89-100.

Wang, K., Yin, X.M., Chao, D.T., Milliman, C.L., Korsmeyer, S.J. BID: a novel
BH3 domain-only death agonist. Genes € Development, 10 (1996), 2859—-2869.
Wells, A. EGFR-receptor. Int. Journal Biochem. Cell Biology, 31 (1999), 637-643.
Wiley, H.S., Shvartsman, S.Y., Lauffenburger, D.A. Computational modeling of the
EGFR-receptor system: A paradigm for systems biology. Trends in Cell Biology,
13, 1 (2003), 43-50.

ISI web page: http://esi-topics.com/erf/october2003.html

SciLab Web Site http://scilabsoft.inria.fr/

P Systems Modelling Framework Web Site: http://www.dcs.shef.ac.uk/
~marian/PSimulatorWeb/P Systems applications.htm

Extended Spiking Neural P Systems

Artiom Alhazov!2, Rudolf Freund?,
Marion Oswald?, and Marija Slavkovik®

! Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
Str. Academiei 5, Chiginau, MD 2028, Moldova
artiom@math.md
2 Research Group on Mathematical Linguistics
Rovira i Virgili University
P1. Imperial Tarraco 1, 43005 Tarragona, Spain
artiome.alhazov@estudiants.urv.cat
3 Faculty of Informatics
Vienna University of Technology
Favoritenstr. 9, A-1040 Wien, Austria
{rudi,marion,marija}@emcc.at

Abstract. We consider extended variants of spiking neural P systems
and show how these extensions of the original model allow for easy proofs
of the computational completeness of extended spiking neural P systems
and for the characterization of semilinear sets and regular languages by
finite extended spiking neural P systems (defined by having only finite
checking sets in the rules assigned to the cells) with only a bounded
number of neurons.

1 Introduction

Just recently, a new variant of P systems was introduced based on the biological
background of neurons sending electrical impulses along axons to other neurons.
This biological background had already led to several models in the area of neural
computation, e.g., see [11], [12], and [8]. In the area of P systems, one basic model
considers hierarchical membrane structures, whereas in another important model
cells are placed in the nodes of a graph (which variant was first considered in
[18]; tissue P systems then were further elaborated, for example, in [7] and [13]).
Based on the structure of this model of tissue P systems, in [10] the new model of
spiking neural P systems was introduced. The reader is referred to this seeding
paper for the interesting details of the biological motivation for this kind of P
systems; we will recall just a few of the most important features:

In spiking neural P systems, the contents of a cell (neuron) consists of a num-
ber of so-called spikes. The rules assigned to a cell allow us to send information
to other neurons in the form of electrical impulses (also called spikes) which
are summed up at the target cell; the application of the rules depends on the
contents of the neuron and in the general case is described by regular sets. As
inspired from biology, the cell sending out spikes may be “closed” for a specific

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 123-134, 2006.
© Springer-Verlag Berlin Heidelberg 2006

124 A. Alhazov et al.

time period corresponding to the refraction period of a neuron; during this re-
fraction period, the neuron is closed for new input and cannot get excited (“fire”)
for spiking again.

The length of the axon may cause a time delay before a spike arrives at the
target. Moreover, the spikes coming along different axons may cause effects of
different magnitude. We shall include these features in our extended model of
spiking neural P systems considered below. Some other features also motivated
from biology will shortly be discussed in Section 5, e.g., the use of inhibiting
neurons or axons, respectively. From a mathematical point of view, the most
important theoretical feature we shall include in our model of extended spiking
neural P systems is that we allow the neurons to send spikes along the axons
with different magnitudes at different moments of time.

In [10] the output of a spiking neural P system was considered to be the
time between two spikes in a designated output cell. It was shown how spiking
neural P systems in that way can generate any recursively enumerable set of
natural numbers. Moreover, a characterization of semilinear sets was obtained
by spiking neural P system with a bounded number of spikes in the neurons.
These results can also be obtained with even more restricted forms of spiking
neural P systems, e.g., no time delay (refraction period) is needed, as it was
shown in [9]. In [17], the behavior of spiking neural P systems on infinite strings
and the generation of infinite sequences of 0 and 1 (the case when the output
neuron spikes) was investigated. Finally, in [1], the generation of strings (over
the binary alphabet 0 and 1) by spiking neural P systems was investigated; due
to the restrictions of the original model of spiking neural P systems, even specific
finite languages cannot be generated, but on the other hand, regular languages
can be represented as inverse-morphic images of languages generated by finite
spiking neural P systems, and even recursively enumerable languages can be
characterized as projections of inverse-morphic images of languages generated by
spiking neural P systems. The problems occurring in the proofs are also caused
by the quite restricted way the output is obtained from the output neuron as
sequence of symbols 0 and 1. The strings of a regular or recursively enumerable
language could be obtained directly by collecting the spikes sent by specific
output neurons for each symbol.

In the extended model introduced in this paper, we shall use a specific output
neuron for each symbol. Computational completeness can be obtained by sim-
ulating register machines as in the proofs elaborated in the papers mentioned
above, yet in an easier way using only a bounded number of neurons. More-
over, regular languages can be characterized by finite extended spiking neural P
systems; again, only a bounded number of neurons is really needed.

The rest of the paper is organized as follows: In the next section, we recall
some preliminary notions and definitions, especially the definition and some well-
known results for register machines. In section 3 we define our extended model
of spiking neural P systems and explain how it works. The generative power
of extended spiking neural P systems is investigated in section 4. Finally, in
section 5 we give a short summary of the results obtained in this paper and

Extended Spiking Neural P Systems 125

discuss some further variants of extended spiking neural P systems, especially
variants with inhibiting neurons or axons.

2 Preliminaries

For the basic elements of formal language theory needed in the following, we
refer to any monograph in this area, in particular, to [2] and [19]. We just list
a few notions and notations: V* is the free monoid generated by the alphabet
V under the operation of concatenation and the empty string, denoted by A,
as unit element; for any w € V*, |w| denotes the number of symbols in w
(the length of w). Ny denotes the set of positive integers (natural numbers),
N is the set of non-negative integers, i.e., N = N;U{0}. The interval of non-
negative integers between k and m is denoted by [k..m]. Observe that there is
a one-to-one correspondence between a set M C N and the one-letter language
L(M) = {a"|n€ M}; eg.,, M is a regular (semilinear) set of non-negative
integers if and only if L (M) is a regular language. By FIN (Nk), REG (Nk),
and RE (Nk), for any k € N, we denote the sets of subsets of N* that are finite,
regular, and recursively enumerable, respectively.

By REG (REG(V)) and RE (RE (V)) we denote the family of regular and
recursively enumerable languages (over the alphabet V', respectively). By W (L)
we denote the Parikh image of the language L C T*, and by PsF L we denote
the set of Parikh images of languages from a given family F'L. In that sense,
PsRE (V) for a k-letter alphabet V' corresponds with the family of recursively
enumerable sets of k-dimensional vectors of non-negative integers.

2.1 Register Machines

The proofs of the results establishing computational completeness in the area of
P systems often are based on the simulation of register machines; we refer to [14]
for original definitions, and to [4] for definitions like those we use in this paper:
An n-register machine is a construct M = (n, P, ly, 1) , where n is the number
of registers, P is a finite set of instructions injectively labeled with elements from
a given set Lab (M), Iy is the initial/start label, and I, is the final label.
The instructions are of the following forms:

— 11 :(A(r),l2,l3) (ADD instruction)
Add 1 to the contents of register » and proceed to one of the instructions
(labeled with) Iy and 3.

—11:(S(r),l2,l3) (SUB instruction)
If register r is not empty, then subtract 1 from its contents and go to in-
struction lo, otherwise proceed to instruction Is.

— Ip, : halt (HALT instruction)
Stop the machine. The final label [}, is only assigned to this instruction.

A (non-deterministic) register machine M issaid to generate a vector (s1, ..., sg)
of natural numbers if, starting with the instruction with label [y and all registers

126 A. Alhazov et al.

containing the number 0, the machine stops (it reaches the instruction I, : halt)
with the first 3 registers containing the numbers s1, .. ., sg (and all other registers
being empty).

Without loss of generality, in the succeeding proofs we will assume that in each
ADD instruction [y : (A (r),l2,13) and in each SUB instruction [y : (S (r),l2,13)
the labels l1, 12, I3 are mutually distinct (for a short proof see [7]).

The register machines are known to be computationally complete, equal in
power to (non-deterministic) Turing machines: they generate exactly the sets
of vectors of non-negative integers which can be generated by Turing machines,
i.e., the family PsRFE.

The results proved in [5] (based on the results established in [14]) and [4], [6]
immediately lead to the following result:

Proposition 1. For any recursively enumerable set L C NP of vectors of non-
negative integers there exists a non-deterministic (8 + 2)-register machine M
generating L in such a way that, when starting with aoll registers 1 to 3 + 2
being empty, M non-deterministically computes and halts with n; in registers i,
1 < < B, and registers B+1 and 8+2 being empty if and only if (ny,...,ng) € L.
Moreover, the registers 1 to 3 are never decremented.

When considering the generation of languages, we can use the model of a register
machine with output tape, which also uses a tape operation:

— 11 : (write (a),12)
Write symbol a on the output tape and go to instruction Is.

We then also specify the output alphabet T in the description of the register
machine with output tape, i.e., we write M = (n, T, P,lo,1).

The following result is folklore, too (e.g., see [14] and [3]):

Proposition 2. Let L CT* be a recursively enumerable language. Then L can
be generated by a register machine with output tape with 2 registers. Moreover,
at the beginning and at the end of a successful computation generating a string
w € L both registers are empty, and finally, only successful computations halt.

3 Extended Spiking Neural P Systems

The reader is supposed to be familiar with basic elements of membrane comput-
ing, e.g., from [15]; comprehensive information can be found on the P systems
web page http://psystems.disco.unimib.it. Moreover, for the motivation
and the biological background of spiking neural P systems we refer the reader
to [10].

An extended spiking neural P system (of degree m > 1) (in the following we
shall simply speak of an ESNP system) is a construct

II=(m,S,R)

Extended Spiking Neural P Systems 127

where

— m is the number of cells (or neurons); the neurons are uniquely identified
by a number between 1 and m (obviously, we could instead use an alphabet
with m symbols to identify the neurons);

— S describes the initial configuration by assigning an initial value (of spikes)
to each neuron; for the sake of simplicity, we assume that at the beginning
of a computation we have no pending packages along the axons between the
neurons;

— R is a finite set of rules of the form (i, E/a* — P;d) such that i € [1..m]
(specifying that this rule is assigned to cell i), E C REG ({a}) is the checking
set (the current number of spikes in the neuron has to be from FE if this rule
shall be executed), k € N is the “number of spikes” (the energy) consumed
by this rule, d is the delay (the “refraction time” when neuron ¢ performs
this rule), and P is a (possibly empty) set of productions of the form (I, w,t)
where [€ [1..m] (thus specifying the target cell), w € {a}" is the weight of
the energy sent along the axon from neuron 4 to neuron [, and ¢ is the time
needed before the information sent from neuron ¢ arrives at neuron ! (i.e.,
the delay along the azon). If the checking sets in all rules are finite, then IT
is called a finite ESNP system.

A configuration of the ESNP system is described as follows:

— for each neuron, the actual number of spikes in the neuron is specified;

— in each neuron i, we may find an “activated rule” (i7 E/d* — P; d’) waiting
to be executed where d’ is the remaining time until the neuron spikes;

— in each axon to a neuron /, we may find pending packages of the form (I, w, t")
where ¢’ is the remaining time until |w| spikes have to be added to neuron [
provided it is not closed for input at the time this package arrives.

A transition from one configuration to another one now works as follows:

— for each neuron 7, we first check whether we find an “activated rule” (i, E/a"
— P;d’) waiting to be executed; if d’ = 0, then neuron i “spikes”, i.e., for
every production (I,w,t) occurring in the set P we put the corresponding
package (I,w,t) on the axon from neuron 7 to neuron I, and after that, we
eliminate this “activated rule” (L E/d* — P; d’);

— for each neuron I, we now consider all packages (I,w,t’) on axons leading
to neuron [; provided the neuron is not closed, i.e., if it does not carry an
activated rule (i, E/a* — P;d’) with d’ > 0, we then sum up all weights w in
such packages where t' = 0 and add this sum of spikes to the corresponding
number of spikes in neuron [; in any case, the packages with ¢ = 0 are
eliminated from the axons, whereas for all packages with ¢’ > 0, we decrement
t' by one;

— for each neuron 4, we now again check whether we find an “activated rule”
(i, E/a* — P;d’) (with d’ > 0) or not; if we have not found an “activated
rule”, we now may apply any rule (L E/d* — P; d) from R for which the

128 A. Alhazov et al.

current number of spikes in the neuron is in £ and then put a copy of this
rule as “activated rule” for this neuron into the description of the current
configuration; on the other hand, if there still has been an “activated rule”
(i,E/a* — P;d’) in the neuron with d’ > 0, then we replace d’ by d’' — 1
and keep (LE/ak — P;d — 1) as the “activated rule” in neuron ¢ in the
description of the configuration for the next step of the computation.

After having executed all the substeps described above in the correct sequence,
we obtain the description of the new configuration. A computation is a sequence
of configurations starting with the initial configuration given by S. A computa-
tion is called successful if it halts, i.e., if no pending package can be found along
any axon, no neuron contains an activated rule, and for no neuron, a rule can
be activated.

In the original model introduced in [10], in the productions (I, w,t) of a rule
(z', E/a* — {(l,w,t)}; d), only w = a (for spiking rules) or w = X (for forgetting
rules) as well as ¢ = 0 was allowed (and for forgetting rules, the checking set E
had to be finite and disjoint from all other sets F in rules assigned to neuron
i). Moreover, reflexive axons, i.e., leading from neuron ¢ to neuron ¢, were not
allowed, hence, for (I, w,) being a production in a rule (i, E/a” — P;d) for neu-
ron i, | # i was required. Yet the most important extension is that different rules
for neuron ¢ may affect different axons leaving from it whereas in the original
model the structure of the axons (called synapses there) was fixed. Finally, we
should like to mention that the sequence of substeps leading from one configu-
ration to the next one together with the interpretation of the rules from R was
taken in such a way that the original model can be interpreted in a consistent
way within the extended model introduced in this paper. From a mathemati-
cal point of view, another interpretation in our opinion would have been more
suitable: whenever a rule (i, E/d* — P; d) is activated, the packages induced by
the productions (I, w,t) in the set P of a rule (LE/ak — P; d) activated in a
computation step are immediately put on the axon from neuron i to neuron [,
whereas the delay d only indicates the refraction time for neuron ¢ itself, i.e.,
the time period this neuron will be closed. Yet as in the proofs of computational
completeness given below we shall not need any of the delay features, we shall
not investigate this variant in more details anymore in the rest of the paper.

Depending on the purpose the ESNP system shall be used, some more fea-
tures have to be specified: for generating k-dimensional vectors of non-negative
integers, we have to designate k neurons as output neurons; the other neurons
then will also be called actor neurons. Without loss of generality, in the follow-
ing we shall assume the output neurons to be the first k£ neurons of the ESNP
system. Moreover, for the sake of conciseness, we shall also assume that no rules
are assigned to these output neurons (in the original model they correspond to
a sensor in the environment of the system; in some sense, they are not neurons
of the system itself). There are several possibilities to define how the output
values are computed; according to [10], we can take the distance between the
first two spikes in an output neuron to define its value; in this paper, we shall
prefer to take the number of spikes at the end of a successful computation in the

Extended Spiking Neural P Systems 129

neuron as the output value. For generating strings, we do not interpret the spike
train of a single output neuron as done, for example, in [1], but instead consider
the sequence of spikes in the output neurons each of them corresponding to a
specific terminal symbol; if more than one output neuron spikes, we take any
permutation of the corresponding symbols as the next substring of the string to
be generated.

The delay t in productions (I,w,t) can be used to replace the delay in the
neurons themselves in many of the constructions elaborated, for example, in
[10], [16], and [1]; there often a subconstruction is implemented which ensures
that a neuron I3 gets a spike one time step later than a neuron I3, both getting
the impulse from a neuron /1; to accomplish this task in the original model, two
intermediate neurons are needed using the refraction period delay of one neuron,
whereas we can get this effect directly from neuron l; by using the delay along
the axons using the rule (I1, E/a* — {(l2,a,0), (I3,a,1)};0). In that way, only
this feature allows for simpler proofs; on the other hand, taking into account the
other extensions in ESNP systems as defined above, we shall not need any of the
delay features for the proofs of computational completeness given below.

4 ESNP Systems as Generating Devices

We now consider extended spiking neural P systems as generating devices. As
throughout this section we do not use delays in the rules and productions, we
simply omit them to keep the description of the systems concise, i.e., for a
production (i, w, t) we simply write (i, w); for example, instead of (2, {a’} /a’ —
{(1,a,0),(2,a?,0)};0) we write (2, {a’} /o' — {(1,a), (2,a7)}).

The following example gives a characterization of regular sets of non-negative
integers:

Example 1. Any semilinear set of non-negative integers M can be generated by
a finite ESNP system with only two neurons.

Let M be a semilinear set of non-negative integers and consider a regular
grammar G generating the language L (G) C {a}" with N (L (G)) = M; with-
out loss of generality we assume the regular grammar to be of the form G =
(N,{a}, A1, P) with the set of non-terminal symbols N, N = {4; | 1 <i <m},
the start symbol Ay, and P the set of regular productions of the form B — aC
with B,C' € N and A — A. We now construct the finite ESNP system IT =
(2,5, R) that generates an element of M by the number of spikes contained in
the output neuron 1 at the end of a halting computation: we start with one
spike in neuron 2 (representing the start symbol A; and no spike in the out-
put neuron 1, i.e., S = {(1,0),(2,1)}. The production A; — aA; is simulated
by the rule (2, {i} /a’ — {(1,a),(2,a7)}) and A; — X is simulated by the rule
(2,{i} /a® — 0), i.e., in sum we obtain

II=(2,5R),

S :{(70)7(2741)}7]

Rz{(Q,{i}/afH{(l,a),(Q,af })|1§i,j§m,Ai—>aAj6P}
U{(2,{1}/a1—>®)|1§z§m,Ai—>x\6P}.

130 A. Alhazov et al.

Neuron 2 keeps track of the actual non-terminal symbol and stops the derivation
as soon as it simulates a production A; — A, because finally neuron 2 is empty.
In order to guarantee that this is the only way how we can obtain a halting
computation in I, without loss of generality we assume G to be reduced, i.e.,
for every non-terminal symbol A from N there is a regular production with A
on the left-hand side. These observations prove that we have N (L (G)) = M.
We can also generate the numbers in M as the difference between the (first)
two spikes arriving in the output neuron by the following ESNP system IT:

Hl = (27 Sl’ R/))
5" ={(1,0),(2,m+1)},
R 2222,{i}/af—>{(27a3)})1 i,j <m,A; — aA; € P}
2,{i} Ja' = {(1,a)}) |1 < i <m, A, —>)\6P}
U {2 {m+1}/a™*! = {(1,a),(2,a)})}.

We should like to mention that one reason for the constructions given above
to be that easy is the fact that we allow “reflexive” axons, i.e., we can keep track
of the actual non-terminal symbol without delay. We could avoid this by adding
an additional neuron 3 thus obtaining the following finite ESNP system:

(3 S// R//)

5” {(,)(0),(3, 1)}, o 4
= {2 {a'} Jo' = {(3.07).(L)}) . (3. {a'} fa — {(2.0%)})
|1<4i,j <m,A; — adj € P}

U{(2,{ai}/ai—>®)\lgigm,AiH)\EP}.

Observe that the derivation in the corresponding grammar now is delayed by a
factor of 2 in the computation in I, because we need one step to propagate the
information from neuron 3 to neuron 2 which then sends the spikes to the out-
put neuron. Hence, an interpretation of the generated number as the difference
between two spikes in the output neuron is not possible anymore.

Lemma 1. For any ESNP system where during a computation only a bounded
number of spikes occurs in the actor neurons, the generated language is reqular.

Proof (sketch). Let IT be an ESNP system where during a computation only
a bounded number of spikes occurs in the actor neurons. Then the number of
configurations differing in the actor neurons and the packages along the axons,
but without considering the contents of the output neurons, is finite, hence, we
can assign non-terminal symbols Aj to each of these configurations and take
all right-regular productions 4; — wA; such that w is a permutation of the
string obtained by concatenating the symbols indicated by the number of added
spikes when going from configuration ¢ to configuration j. If we interpret just the
number of spikes in the output neurons as the result of a successful computation,
then we obtain the Parikh set of the language, which then obviously is regular,
i.e., semilinear. ([

As we shall see later in this section, ESNP systems are computationally complete,
hence, the question whether in an ESNP system during a computation only a

Extended Spiking Neural P Systems 131

bounded number of spikes occurs in the actor neurons is not decidable, but there
is a simple syntactic feature that allows us to characterize regular sets, namely
the finiteness of an ESNP system. The following theorem is a consequence of the
preceding lemma and the example given above:

Theorem 1. Any regular language L with L C T* for a terminal alphabet T
with card (T) = n can be generated by a finite ESNP system with n+ 1 neurons.
On the other hand, every language generated by a finite ESNP system is regular.

Proof. Let G be a regular grammar generating the language L (G) = L C T*,
T = {ar | 1 <k < n}; without loss of generality we assume the regular grammar
to be of the form G = (N, T, Ay, P) with the set of non-terminal symbols N,
N ={A;|1<1i<m}, the start symbol A;, and P the set of regular productions
of the form A; — arA; with A;,A; € N, ar, € T, and A; — X with A4; € N.
We now construct the finite ESNP system IT = (n + 1, S, R) that generates an
element of L by the sequence of spikes in the output neurons 1 to n corresponding
with the desired string during a halting computation: we start with one spike
in neuron n + 1 (representing the start variable A;) and no spike in the output
neurons 1 to n:

nI=(n+1,5R),
S ={(1,0),..,(n,0),(n +1,1)}, ,
R = {(n—t—l,{az}/aZ — {(k,a), (n—!—l,aj)}),

|1<id,j<m,1<k<n,A — a,A; € P}
U{(n+1,{a'}/a* - 0)|1<i<m, A — Xe P}.

Obviously, L (G) = L (IT) = L.

On the other hand, let IT = (m, S, R) be a finite ESNP system. Then from IT
we can construct an equivalent finite ESNP system [T’ = (m, S, R') such that
IT’ fulfills the requirements of Lemma 1: let z be the maximal number occurring
in all the checking sets of rules from R and let y be (a number not less than) the
maximal number of spikes that can be added in one computation step to any of
the m neurons of IT (an upper bound for y is the maximal number of weights
in the productions of the rules in R multiplied by the maximal delay in these

productions +1 multiplied by the maximal number of axons ending in a neuron
of IT); then define

R = RU{ (i, {a™**) fa* — 0) [1<k < 29}

Hence, the maximal number of spikes in any of the neurons of II’ is x + 2y,
therefore Lemma 1 can be applied (observe that the additional rules in R’ cannot
lead to additional infinite computations, because they only consume spikes, but
let the contents of the neurons stay above x, hence, no other rules become
applicable). a

Corollary 1. Any semilinear set of n-dimensional vectors can be generated by
a finite ESNP system with n + 1 neurons. On the other hand, every set of n-
dimensional vectors generated by a finite ESNP system is semilinear.

132 A. Alhazov et al.

Proof. The result directly follows from Theorem 1 by just taking the number of
spikes in the output neurons, i.e., the corresponding Parikh set of the generated
language (because PsREG ({a; | 1 <i <n}) = REG (N")). O

We now show that every recursively enumerable language over an n-letter alpha-
bet can be generated by an ESNP system with a bounded number of neurons:

Theorem 2. Any recursively enumerable language L with L C T™* for a terminal
alphabet T with card (T) = n can be generated by an ESNP system with n + 2
Neurons.

Proof. Let M = (d, T, P,ly,1;,) be a register machine with output tape generating
L (according to Proposition 2, d = 2 is sufficient), and without loss of generality,
let Lab (M) = [0..m — 1], lp = 1 (the start label), and I}, = 0 (the final label).
Then we construct an ESNP system IT = (n + d, S, R) as follows:

II=(n+d,S,R),
S={EGN|1<i<n+d,i#n+1}U{(n+1,a)},
R (n+1,{a™*"|jeN}/a' = {(n+1,am"k)})
11:(A(n+1),0,0") € Pk e {I,I"}}
(n+1,{am*"|jeN}/a = {(n+1,a"),(n+1i,a™)})
L (A(n+i), 00" e Pk e (1"}, 1<i<d)

U {(n+1,{al}/al — {(n%—l,al”)}),
oo b o 1.6
[1:(S(n+1),I',l") e P}

U {(n+1,{amit! j{E(N} /a H){i?;—ki,al)}),
n+1, {al}/al —{(n+1,d")
En—&—l} {ami*h | j e Ny} Jaltm — {(n—i—Lal/)})7
[1:(S(n+14),U,1"Ye P1<i<d}

U {(n+1,{amj+l | j €N} /al — {(n—t—l,al/) ,(s,a)}),
| 1: (write (as),l') € P,1 <s<n}.

The neurons 1 to n are the output neurons and the actor neurons n + 1,
1 <4 < d, represent the d registers of M. The contents ¢; of register ¢ of M is
stored as mc; spikes in neuron n + 1.

To simulate the instructions of P, the label [of the current instruction is
also stored in neuron n + 1, which then contains mc; + [spikes and thus guides
the whole computation. Whenever a SUB instruction on a register ¢ > 1 has to
be simulated, in an intermediate step the control temporarily goes to register 4
which then contains mc; +1. A tape operation [: (write (ax),!") is simulated by
sending a spike to the output neuron representing symbol ay.

Extended Spiking Neural P Systems 133

As at the end of a successful computation all registers are empty and I, = 0,
also the computation in IT stops because the actor neurons n+1i, 1 <14 < d, will
not spike anymore. |

Corollary 2. Any recursively enumerable set of n-dimensional vectors can be
generated by an ESNP system with n 4+ 2 neurons.

Proof. The result directly can be proved by using Proposition 1 and a similar con-
struction as that one elaborated in the proof of Theorem 2, yet it also follows from
Theorem 2 by just taking the number of spikes in the output neurons as the value
of the components of the n-dimensional vector, i.e., by taking the correspond-
ing Parikh set of the generated language (because PsRE ({a; |1 <i<n}) =
RE (N™)). |

5 Summary and Further Variants

In this paper, we have considered various extensions of the original model of spik-
ing neural P systems, some of them arising from biological motivations, some
others being more of mathematical interest than having a biological interpre-
tation. The extensions considered in more detail here allowed for establishing
computational completeness in an easy way, and moreover, we got a quite nat-
ural characterization of semilinear sets of (vectors of) non-negative integers and
regular languages, respectively, by finite extended spiking neural P systems with
a bounded number of neurons. On the other hand, in the future some other
restrictions should be investigated allowing for the characterization of sets in a
family between the families of regular and recursively enumerable sets (of vectors
of non-negative integers or strings).

A quite natural feature found in biology and also used in the area of neural
computation is that of inhibiting neurons or axons between neurons. We can
include this feature in our extended model of spiking neural P systems considered
above in a variant closely related to the original model of spiking neural P
systems by specifying certain connections from one neuron to another one as
inhibiting ones — the spikes coming along such inhibiting axons then would close
the target neuron for a time period given by the sum of all inhibiting spikes.

Acknowledgements

The first and the second author very much appreciate the interesting discussions
with Gheorghe Paun during the Brainstorming Week on Membrane Computing
2006 in Sevilla on the main features of spiking neural P systems. The work of
Artiom Alhazov is partially supported by the project TIC2003-09319-C03-01
from Rovira i Virgili University. The work of Marion Oswald is supported by
FWF-project T225-N04.

134

A. Alhazov et al.

References

1.

10.

11.

12.
13.

14.

15.
16.

17.

18.

19.

20.

Chen H, Freund R, Ionescu M, Paun Gh, Pérez-Jiménez MJ (2006) On String
Languages Generated by Spiking Neural P Systems. In: Gutiérrez-Naranjo MA,
Paun Gh, Riscos-Ninez A, Romero-Campero FJ (eds) Fourth Brainstorming Week
on Membrane Computing, Vol. I RGNC REPORT 02/2006, Research Group on
Natural Computing, Sevilla University, Fénix Editora, 169-194

. Dassow J, Pdun Gh (1989) Regulated Rewriting in Formal Language Theory.

Springer, Berlin

. Fernau H, Freund R, Oswald M, Reinhardt K (2005) Refining the Nonterminal

Complexity of Graph-controlled Grammars. In: Mereghetti C, Palano B, Pighizzini
G, Wotschke D (eds) Seventh International Workshop on Descriptional Complexity
of Formal Systems, 110-121

. Freund R, Oswald M (2003) P Systems with activated/prohibited membrane chan-

nels. In: Paun Gh , Rozenberg G, Salomaa A, Zandron C (eds) Membrane Com-
puting. International Workshop WMC 2002, Curtea de Arges, Romania. Lecture
Notes in Computer Science 2597, Springer, Berlin, 261-268.

. Freund R, Oswald M (2002) GP Systems with Forbidding Context. Fundamenta

Informaticae 49:81-102

. Freund R, Pdun Gh (2004) From Regulated Rewriting to Computing with Mem-

branes: Collapsing Hierarchies. Theoretical Computer Science 312:143-188

. Freund R, Pdun Gh, Pérez-Jiménez M J (2004) Tissue-like P systems with channel

states. Theoretical Computer Science 330:101-116

. Gerstner W, Kistler W (2002) Spiking Neuron Models. Single Neurons, Popula-

tions, Plasticity. Cambridge Univ. Press

. Ibarra OH, Paun A, Paun Gh, Rodriguez-Patén A, Sosik P, Woodworth S (2006)

Normal Forms for Spiking Neural P Systems. In: Gutiérrez-Naranjo MA, Paun Gh,
Riscos-Nufiez A, Romero-Campero FJ (eds) Fourth Brainstorming Week on Mem-
brane Computing, Vol. II RGNC REPORT 02/2006, Research Group on Natural
Computing, Sevilla University, Fénix Editora, 105-136

Ionescu M, Paun Gh, Yokomori T (2006) Spiking neural P systems. Fundamenta
Informaticae 71, 2-3:279-308

Maass W (2002) Computing with spikes. Special Issue on Foundations of Informa-
tion Processing of TELEMATIK 8, 1:32-36

Maass W, Bishop C (eds) (1999) Pulsed Neural Networks. MIT Press, Cambridge
Martin-Vide C, Pazos J, Paun Gh, Rodriguez-Patén A (2002) A new class of
symbolic abstract neural nets: Tissue P systems. In: Proceedings of COCOON
2002, Singapore, Lecture Notes in Computer Science 2387, Springer-Verlag, Berlin,
290-299

Minsky M L (1967) Computation: Finite and Infinite Machines. Prentice Hall,
Englewood Cliffs, New Jersey

Paun Gh (2002) Computing with Membranes: An Introduction. Springer, Berlin
Paun Gh, Pérez-Jiménez MJ, Rozenberg G (2006) Spike trains in spiking neural P
systems, Intern J Found Computer Sci, to appear (also available at [20])

Paun Gh, Pérez-Jiménez MJ, Rozenberg G (2006) Infinite spike trains in spiking
neural P systems. Submitted

Paun Gh, Sakakibara Y, Yokomori T (2006) P systems on graphs of restricted
forms. Publicationes Mathematicae Debrecen 60:635-660

Rozenberg G, Salomaa A (eds) (1997) Handbook of Formal Languages (3 volumes).
Springer, Berlin

The P Systems Web Page, http://psystems.disco.unimib.it

Towards a Characterization of P Systems with
Minimal Symport/Antiport and Two
Membranes*

Artiom Alhazov!:? and Yurii Rogozhin!

! Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
{artiom,rogozhin}@math.md
2 Research Group on Mathematical Linguistics
Rovira i Virgili University, Tarragona, Spain
artiome.alhazov@estudiants.urv.cat

Abstract. We prove that any set of numbers containing zero generated
by symport/antiport P systems with two membranes and minimal co-
operation is finite (for both symport/antiport P systems and for purely
symport P systems). On the other hand, one additional object in the
output membrane allows symport/antiport P systems (purely symport
P systems) with two membranes and minimal cooperation generate any
recursively enumerable sets of natural numbers without zero. Thus we
improve our previous results for symport/antiport P systems with two
membranes and minimal cooperation from three “garbage” objects down
to one object and for purely symport P systems from six objects down
to one object. Thus we show the optimality of these results.

1 Introduction

P systems with symport/antiport rules, i.e., P systems with pure communica-
tion rules assigned to membranes, first were introduced in [19]; symport rules
move objects across a membrane together in one direction, whereas antiport
rules move objects across a membrane in opposite directions. These operations
are very powerful, i.e., P systems with symport/antiport rules have universal
computational power with only one membrane, e.g., see [10], [14], [11].

A comprehensive overview of the most important results obtained in the area
of P systems and tissue P systems with symport/antiport rules (with respect to
the development of computational completeness results improving descriptional
complexity parameters as the number of membranes and cells, respectively, the
weight of the rules and the number of objects) can be found in [1].

In this paper, we first show that if some P system with two membranes and
with minimal cooperation, i.e., a P system with symport/antiport rules of weight
one or a P system with symport rules of weight two, generates a set of numbers

* The authors acknowledge the project 06.411.03.04P from the Supreme Council for
Science and Technological Development of the Academy of Sciences of Moldova.

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 135-153, 2006.
© Springer-Verlag Berlin Heidelberg 2006

136 A. Alhazov and Y. Rogozhin

containing zero, then this set is finite. After that we prove that P systems with
symport/antiport rules of weight one can generate any recursively enumerable
set of natural numbers without zero (i.e., they are computationally complete
with just one superfluous object remaining in the output membrane at the
end of a halting computation). The same result is true also for purely symport
P systems of weight two. In this way, we improve the results from [1] for sym-
port/antiport P systems with two membranes and minimal cooperation from
three “‘garbage” objects down to one object and for purely symport P systems
with two membranes and minimal cooperation from six objects down to one
object. Thus we show the optimality of these results.

Notice that symport/antiport P systems with three membranes and minimal
cooperation can generate any recursively enumerable sets of natural numbers
without using superfluous objects in the output membrane [3]. The question
about precise characterization of computational power of symport/antiport P
systems (purely symport P systems) with two membranes and minimal cooper-
ation is still open.

2 Basic Notations and Definitions

For the basic elements of formal language theory needed in the following, we
refer to [24]. We just list a few notions and notations: N denotes the set of
natural numbers (i.e., of non-negative integers). Vx is the free monoid gener-
ated by the alphabet V' under the operation of concatenation and the empty
string, denoted by A, as unit element; by NRE, NREG, and NFIN we denote
the family of recursively enumerable sets, regular sets, and finite sets of natural
numbers, respectively. For k > 1, by Ny RE we denote the family of recursively
enumerable sets of natural numbers excluding the initial segment 0 to k — 1.
Equivalently, NyRE = {k+ L | L € NRE}, where k+ L = {k+n|n € L}. Par-
ticularly, NyRE = {N € NRE | 0 ¢ N}. We will also use the next notations:
N5oFIN ={N e NFIN |0€ N}, N5oSEG; ={{keN |k <n}|n >0} and

The families of recursively enumerable sets of vectors of natural numbers are
denoted by PsRE.

2.1 Counter Automata

A non-deterministic counter automaton (see [9], [1]) is a construct
M = (da Q7q0a qf, P)) where

— d is the number of counters, and we denote D = {1,...,d};

— (@ is a finite set of states, and without loss of generality, we use the notation
Q={q:0<i<f}and F={0,1,....f},

— qo € Q is the initial state,

— gy € @ is the final state, and

— P is a finite set of instructions of the following form:

Towards a Characterization of P Systems 137

1. (¢ — q, k+), with i,1 € F, i # f, k € D (“ increment” instruction). This
instruction increments counter k£ by one and changes the state of the system
from g¢; to q.

2. (¢ = q,k—), with i,l € F, i # f, k € D (“ decrement” instruction). If the
value of counter k is greater than zero, then this instruction decrements it
by 1 and changes the state of the system from g¢; to g;. Otherwise (when the
value of counter k is zero) the computation is blocked in state g;.

3. (¢i = qi,k=0), withi,l € F, i # f, k € D (“ test for zero” instruction).
If the value of counter k is zero, then this instruction changes the state of
the system from ¢; to ¢;. Otherwise (the value stored in counter k is greater
than zero) the computation is blocked in state ;.

4. halt. This instruction stops the computation of the counter automaton, and
it can only be assigned to the final state g;.

A transition of the counter automaton consists in updating/checking the value
of a counter according to an instruction of one of the types described above and
by changing the current state to another one. The computation starts in state qq
with all counters being equal to zero. The result of the computation of a counter
automaton is the value of the first k counters when the automaton halts in state
g5 € Q (without loss of generality we may assume that in this case all other
counters are empty). A counter automaton thus (by means of all computations)
generates a set of k-vectors of natural numbers.

It is known that any set of k-vectors of natural numbers from PsRFE can be
generated by a counter automaton with k + 2 counters where only “increment”
instructions are needed for the first k counters. We will use this in our proofs.

2.2 P Systems with Symport/Antiport Rules

The reader is supposed to be familiar with basic elements of membrane comput-
ing, e.g., from [21]; comprehensive information can be found in the P systems
web page, [28].

A P system with symport/antiport rules is a construct

I =(0,u,wi,...,wg, E Ry, ..., R i), where

1. O is a finite alphabet of symbols called objects;

2. p is a membrane structure consisting of kK membranes that are labeled in a
one-to-one manner by 1,2, ... k;

3. w; € OF, for each 1 <14 < k, is a finite multiset of objects associated with
the region ¢ (delimited by membrane i);

4. E C O is the set of objects that appear in the environment in an infinite
number of copies;

5. R;, for each 1 < i < k, is a finite set of symport/antiport rules associated
with membrane i; these rules are of the forms (z,in) and (y, out) (symport
rules) and (y, out; x,in) (antiport rules), respectively, where z,y € OT;

6. ig is the label of an elementary membrane of 1 that identifies the correspond-
ing output region.

138 A. Alhazov and Y. Rogozhin

A P system with symport/antiport rules is defined as a computational device
consisting of a set of k hierarchically nested membranes that identify & distinct
regions (the membrane structure p), where to each membrane i there are assigned
a multiset of objects w; and a finite set of symport/antiport rules R;, 1 <i < k.
A rule (z,in) € R; permits the objects specified by x to be moved into region i
from the immediately outer region. Notice that for P systems with symport rules
the rules in the skin membrane of the form (x,in), where x € E*, are forbidden.
A rule (x,out) € R; permits the multiset to be moved from region 4 into
the outer region. A rule (y, out;x,in) permits the multisets y and x, which are
situated in region 7 and the outer region of 7, respectively, to be exchanged. It is
clear that a rule can be applied if and only if the multisets involved by this rule
are present in the corresponding regions. The weight of a symport rule (z,in)
or (x,out) is given by |z|, while the weight of an antiport rule (y, out;z,in) is
given by max{|z|, |y|}.

As usual, a computation in a P system with symport/antiport rules is obtained
by applying the rules in a non-deterministic maximally parallel manner. Specif-
ically, in this variant, a computation is restricted to moving objects through
membranes, since symport/antiport rules do not allow the system to modify
the objects placed inside the regions. Initially, each region ¢ contains the corre-
sponding finite multiset w;, whereas the environment contains only objects from
FE that appear in infinitely many copies.

A computation is successful if starting from the initial configuration, the P
system reaches a configuration where no rule can be applied anymore. The result
of a successful computation is a natural number that is obtained by counting all
objects (only the terminal objects as it is done in [2], if in addition we specify
a subset of O as the set of terminal symbols) present in region ig. Given a P
system I1, the set of natural numbers computed in this way by IT is denoted by
N(IT) (or N(II)r if the terminal symbols are distinguished). If the multiplicity
of each (terminal) object is counted separately, then a vector of natural numbers
is obtained, denoted by Ps(IT), see [21].

By NOP,, (syms, anti;) we denote the family of natural number sets generated
by P systems with symport/antiport rules with at most m > 0 membranes,
symport rules of size at most s > 0, and antiport rules of size at most ¢t > 0. By
NOP,, (syms, anti;) we denote the corresponding families of natural numbers
without the initial segment {0,1,...,k — 1} generated by such P systems. Any
unbounded parameter m, s, t is replaced by *. If ¢t = 0, then we may omit anti;.

3 The Garbage Is Unavoidable

Theorem 1. If M € NOP»(sym1,antiy), then 0 € M = M € NFIN.

Proof. Consider an arbitrary P system IT with two membranes and symport/an-
tiport rules of weight one,

I = (07[1 [2]2]17w17w27E7R17R272)~

Towards a Characterization of P Systems 139

For II, consider some computation C generating 0: C ends in some configuration
C with nothing in membrane 2, u; € (O — E)* and u. € E* in membrane 1
and ug € (O — E)* in the environment. Finally, consider an arbitrary halting
computation C' of II: C' ends in some configuration C’ with vo € (O — E)*
and vy € E* in membrane 2, with v; € (O — E)* and v. € E* in membrane 1
and vy € (O — E)* in the environment. We are claiming that |vavy| + [v1ve| <
|wa| + |wi| (i-e., the total number of objects in the system cannot grow without
starting an infinite computation, and thus II cannot generate numbers greater
than the initial number of objects inside it).

Let us assume the contrary. Since the number of objects inside the system can
only increase by symport rules, some rule pg : (so,in) € Ry had to be applied
at some step of C’ (by definition sg € O — E). This implies that sy has been
brought to the environment. We can assume that rules p; : (s;, out; s;—1,in) € Ry,
1 <i < n, have been applied (n > 0), s; € O — E, 1 <1i < n. Suppose also that
n is maximal (s,, was not brought to the environment by antiport with another
object from O — E). Thus R; contains either a rule p : (s,,out) € Ry, or p’ :
(Sn,out;a,in) € Ry, a € E.

Examine the final configuration C' of the computation generating 0. Recall
that since region 2 is empty, we cannot “hide” anything there. If sy is in wug,
then py can be applied, hence C' is not final. Therefore (region 2 is empty) s is
in uy. For all 1 <4 < mn, given s;_1 € wy, if s; is in ug, then p; can be applied,
hence C' is not final. Consequently (region 2 is empty), s; is in w; as well. By
induction, we obtain that s, is in w;. However, this implies that either p € R
and p can be applied, or some p’ € R and p’ can be applied, therefore C is not
final.

This implies that if a system may generate 0, then any computation where
the number of objects inside the output membrane is increased cannot halt.
Therefore, IT cannot generate infinite sets containing 0. O

The corresponding result also holds for systems with symport of weight at most
two, but the proof is more difficult.

Theorem 2. If M € NOP,(syms), then 0 € M = M € NFIN.

Proof. Consider an arbitrary P system Il with two membranes and symport
rules of weight at most two, IT = (O, [, [, |, |1, w1, we, E, Ry, Ry, 2); without
restricting generality we may assume that the objects that compose w; and
wy are disjoint from the objects in E. For II, consider some computation C
generating 0: C ends in some configuration C' with nothing in membrane 2,
ui € (O—E)* and u, € E* in membrane 1 and uy € (O—E)* in the environment.
Finally, consider an arbitrary halting computation C’' of II: C’ ends in some
configuration C’ with vy € (O — E)* and vy € E* in membrane 2, with v; €
(O—E)* and v, € E* in membrane 1 and vy € (O — E)* in the environment. We
are claiming that |vovs| + |v1ve| < |wa| + Jwi| (ie., the total number of objects
in the system cannot grow without starting an infinite computation, and thus 17
cannot generate numbers greater than the initial number of objects inside it).

140 A. Alhazov and Y. Rogozhin

Let us assume the contrary. Denote by Iy the set of objects from O — E
that we know must be in the environment in order for II to halt with region
2 being empty; start with Iy = (). Since bringing from the environment some
object a € E U Iy is necessary (though not sufficient) to increase the number
of objects inside the system, some rule (ab,in) € Ry had to be applied at some
step of C’ (if @ € E, by definition b € O — E; if a € I, then also b must be in
O — E, otherwise rule (ab,in) would be applicable in C, which is supposed to be
a halting configuration).

Clearly, object b was originally in region 1, so it has been brought to the
environment by some rule (b, out) € Ry or (bc,out) € R;. In the first case, the
system cannot halt without “hiding” object b in region 2 (contradiction with the
assumption on C). In the second case, we have a few possibilities. If c = a’ € E,
then by application of rules (a’b, out), (ab,in) we have simply exchanged a’ by
a in region 1; since a’ has been brought in the region 1 beforehand, we can
repeat the same reasoning taking a’ instead of a (this may only happen a finite
number of times since we examine the computation C backwards). Finally, if
¢ =V € O—E, then by application of rules (a’b, out), (ab,in) we have exchanged
b by a in region 1. This will not increase the number of objects unless o’ does
not stay in the environment. Notice also that in configuration C' object b’ has to
be in the environment. Add ¥’ to Iy and repeat the same reasoning.

The argument above implies that if a system can increase the number of
objects inside it, then it cannot halt without any objects in region 2. Therefore,
II cannot generate infinite sets containing 0. a

4 Universality

Theorem 3. NOP;(sym1,anti;) = NyRE U F, where
N5oSEG) C F C NagFIN.

Proof. While the upper bound of F' results from Theorem 1, the lower bound of
F is satisfied even by one-membrane constructions, see [4]. In what follows, we
deal with proving N;OPs(symq,anti;) = N RE.

Without loss of generality we simulate a counter automaton M = (d, @, qo,
gf, P) with the first counter being the output counter. Recall that M starts with
empty counters. Notice, that the output counter may be only “incremented”. We
also suppose that all instructions from P are labeled in a one-to-one manner with
elements of {1,...,n} = I, nis alabel of the halt instruction and I’ = I'\{n}. We
denote by I, I_, and I—g the set of labels for the “increment”, “decrement”,
and “test for zero” instructions, respectively. We use also the next notation:
C = {Ck}, ke D.

We construct the P system II; as follows:

Hl = (07[1 [2]2 }17w17w27E7R17R272)7
O:EU{IcuM757T17T27T37J17J2}U{bjudj |JEI}7
E=QuUCU{aj,e;|jeltU{a;|jeltU{Jo}U{Fi|0<i<6},

Towards a Characterization of P Systems 141

wy = I.J1Ja,

wo = T1T2T3MSH bj H dj,
jel jel
Ri=RisURi,UR;;, i=1,2.

We code the counter automaton as follows:

Region 1 will hold the current state of the automaton, represented by a symbol
q; € Q; region 2 will hold the value of all counters, represented by the number
of occurrences of symbols ¢, € C, k € D, where D = {1,...,d}.

We split our proof into several parts that depend on the logical separation of
the behavior of the system. We will present the rules and the initial symbols for
each part, but we remark that the system we present is the union of all these
parts. The rules R; are given by three phases:

1. START: preparation of the system for the computation.
2. RUN: simulation of instructions of the counter automaton.
3. END: terminating the computation.

The parts of the computations illustrated in the following describe different
phases of the evolution of the P system. For simplicity, we focus on explaining a
particular phase and omit the objects that do not participate in the evolution at
that time. Each rectangle represents a membrane, each variable represents a copy
of an object in a corresponding membrane (symbols outside of the outermost
rectangle are found in the environment). In each step, the symbols that will
evolve (will be moved) are written in boldface. The labels of the applied rules
are written above the symbol =-.

1. START

During the first phase we bring from the environment an arbitrary number of
symbols ¢, k € D, into region 1. We suppose that we have enough symbols ¢y,
in region 1 to perform the computation. Otherwise, the computation will never
stop. We also use the following idea: in our system we have a symbol M which
moves from region 2 to region 1 and back in an infinite loop. This loop may be
stopped only if all stages completed correctly.

Rys = {1s1: (I,in), 182 : (1., out; ck,in), 183 : (S, out; qo,in) | ¢, € C'}
Ry s = {2s1: (M, out),2s2: (M,in),2s3: (S, out; I.,in)}

Symbol I. brings symbols ¢ from the environment into region 1 (rules 1s1,
1s2), where they may be used during the simulation of the “increment” instruc-
tion and then moved to region 2.

We illustrate the beginning of the computation as follows:

CkyChy - - Chy G0 Ie MLS =122 [y oo cp,qo cp, M S =151:282

Cky - - Ck, Qo Leck, MLS =is22sl Icqo ckyChy - -Cle, M S = 1s1,2s2

142 A. Alhazov and Y. Rogozhin

251,253
qo Icck,Ciy ... cp, MS =232%%° qg Scy, ¢k, - - - Ck,

1. is eventually exchanged with .S, which in turn brings gy into region 1, and
the simulation of the register machine begins. Symbol . is then situated in
region 2 and can be used during the second stage as a “trap” symbol, i.e.,

S qoCk,Cky - - - Cky MIC

order to organize an infinite computation.

Notice that some rules are never executed during a correct simulation: ap-
plying them would lead to an infinite computation. To help the reader, we will
underline the labels of such rules in the description below.

2. RUN

Ry, = {1r1:
U {1r2:
U {113
U {1r4:
U {1r6:
U {127 :
U {118
U {1r10:
U {1ri1:
U {1r12:
U {1r13:
U {1r14:

Ry, = {2r1:
U {2ra
U {2r5:
U {2r6:
U{2r7: (a
U {2r8:
U {2r9:
U {2r10:
U {2r13:
U {2r14:
U {2r15:
U {2r16:

gi,out;a;,in) | (j:q; — q,cy) € Py € {+,—,=0}}

qf,out; ap,in)}

bj, out; a’;,in) \jEI'}

(

(

(

(aj,out; Jo,in), 1r5: (J1,out;bj,in) | j € I'}
(Jo, out; Jy,in)

(el Ulo}
(a)

out;d;,in) | j
, 1r9: (af, out;dj,in) | j € I}
|
}

!
aj,

;,out,awm
Ja,out;d;,in) | j € It}
Ja, out; Jy,in)

(
(
(dj,out;ej,in) | j € I}
(¢
(

ej,out,q,in) | (j: ¢ — qi,cry) € Py € {+,—,

en,out; Fy,in), 1r15 : (by, out)}.

b;,out;a;,in),2r2 : (a;, out; Jo,in),2r3 : (a;, out; Ji,in) | j € I}

cryoutyal,in) | (j:qi — q,cp = 0) € P}

(

(

(ck,out;af,in) | (j: ¢ — q,cr—) € P}
(a},out; Jy,in) | j € I U I} }
(af,out) |j el }

(a

(

aj,out;c,in) | j: ¢ — q, cx+) € P}

dj,out;bj,in) | j € I}

ej,out;d;,in), 2ril: (e;,out; Ji,in), 2ri2: (e;,in) | j € I+ }

(

(J2,0ut;dj,in) | j € I_ogUI_}
(Jo,out;a’,in) | j € I}
(
(Le

b J’
ljel-}

1., out; a] , m)
n)

Towards a Characterization of P Systems 143

First of all, we mention that if during the phase RUN object J; comes to the
environment (Scenario 0), it remains there forever. Then during the simulation
of the next instruction of the counter automaton, instead of rule 2r2, rule 2r3
will be applied, sending J; forever to region 2. Then the computation never
halts, see scenario 1 below.

Let us explain the synchronization of a; coming to the environment and b;
leaving the environment: the first one brings Jy into region 1 while the latter
brings J; into the environment; then rule 1r6 returns Jy and J; to their original
locations.

If a; comes to the environment without b; leaving it, J; remains in region 1
(or 2) and Jy comes to region 1 (Scenario 1), so 2r16 is applied, causing an
endless computation since 1s1 and 1s2 are always applicable.

If b; leaves the environment without a; coming there, Jy remains in the envi-
ronment and J; comes there (Scenario 2), so 1r11 is applied (immediately in
case of simulating an increment instruction or in a few steps in case of simulating
a decrement or a zero-test instruction), sending Jo forever to the environment.
The computation never halts, see scenario 0.

We also mention that applying rule 1r10 causes scenario 0; applying 2r4 leads
to applying 2r6; applying rule 2r6 or 2r11 causes J; to stay in region 2 forever,
eventually causing scenario 1. Finally, applying rule 2r15 also causes an infinite
computation by 1s1 and 1s2. Therefore, in order for a computation to halt, no
underlined rule should be applied.

We will now consider the “main” line of computation.

“Increment” instruction:
(i) There is some ¢ in region 1:

qejajailo dickiJa bid; = qiqiejaj o ajep iz bid; =
qiqiejaiJo bicy J1Jz ajd; =222 g;qie;bjJo ajerJ1a; Jad; = 1r4,175,2r14
giqiejajJ1 cxJobj e andj (A)
16218219 ¢, 000 Ty ol Jydj o cxby =112
giqdja;Jo anJ1ejJ2 cpb; =2 qiqlaja}JO d;J1)2 ejerb; =10
qianajalJo ejJiJy djcyby =1 giejajalJo i1z djerb;
In that way, ¢; is replaced by ¢; and ¢ is moved from region 1 into region 2.

Notice that symbols a;, b, a;, d;, ej, Ja, J1, Jo have returned to their original
positions.

(ii) There is no cy in region 1:
Consider configuration (A) above without object ¢ in region 1:

qiqlejaj.]l JoijQ a;-dj =176,2r9 qiqlejaon JldeQ anbj

144 A. Alhazov and Y. Rogozhin

Now rule 2r6 will be applied, causing an infinite computation.
“Decrement” instruction:
(i) There is some ¢y in region 2:
qejazasa’alJy qiJiJe bicpd; =Y qiqejaialia’l Jo ayJiJa bjepd; =21
1€;ata;a;dyJo iJ1J2 U5CLkA; iq1€jdrt; Qs Jo ajl1J2 DjCrd;
1r3,2r2
qiqlejataga;’Jo ijlJz ajckdj E qiqlejataJ’-’ijg anJlaj chkdj
1r4,1r5,1r8
= 1r&,1rs,1r qiqlejataja;-Jl ngjaJ’.’ Jaockd; (B)
1r6,2r5,2r9 1r12,2r7
E qiqlejataja;Jo Jldjck a_/i/ijQ E i
/ " 1r9,1r13 . ! Al . .
qiqldjatajaon a; Jiejer by oy =N gi€jaca;asa’; Jo aiJ1djer b;J2
1r1,2r13
E i qiqlejaja;a;’Jo aiJ1Jacy bjdj
In the way described above, ¢; is replaced by ¢; and ¢ is removed from region 2
to region 1. Notice that symbols aj, af, af, bj, d;, ej, J2, J1, Jo have returned

to their original positions. Symbol d; returns to region 2 in the first step of the
simulation of the next instruction (the last step of the illustration).

(ii) There is no c in region 2:

We start with configuration (B) without ¢ in region 2.
qiqlejataja;Jl ngjaJ’.’ JdeIc
Now rule 2r15 will be applied, leading to an infinite computation.

“Test for zero” instruction:
q; is replaced by ¢; if there is no ¢ in region 2, otherwise a;» in region 1
exchanges with ¢ in region 2 and the computation will never stop.
(i) There is no ci, in region 2:
qlejataja;JO qu1J2 bjdj =1t qiqlejata;-Jo aleJg bjdj
=1 qiqrejaiaj o by J1J2 ajd;
= 1r3,2r2 qiqlejatijg a;Jlaj Jgdj (C)
=8I0 g qiejaia; Iy bja’Jo Jod; =16:219 g, qre5a.a; Jo Jialid; Jab; = 1rt2

/ 1r7,1r13 / 1r1,2r13
qiqlatajdeO Jlajej ngj =0 qiejatajajJO quldj szj =TT

qiqiejazayJo agJiJz bid;

Towards a Characterization of P Systems 145

In this case, ¢; is replaced by ¢;. Notice that symbols a;, a;, bj, dj, e, Ja,
J1, Jo have returned to their original positions. Symbol d; returns to region 2
in the first step of the simulation of the next instruction (the last step of the
illustration).

(ii) There is some cy, in region 2:
Consider configuration (C) with object ¢ in region 2:

giqiejarb;Jo anJlaj Jackd;

Now rule 2r4 will be applied immediately, and then the computation never halts.

Let us consider the symbols from region 2 visiting the environment and going
back: 2 -1 —0—1— 2 (b;,d; for all instructions) and the symbols from the
environment visiting region 2 and going back: 0 — 1 — 2 — 1 — 0. The latter
ones are: a; for all instructions, and also {a},e; | j € I }U{a] | j€ I-}.

Then we have to argue that if they Return to their “home region” (2 — 1 — 2
or 0 — 1 — 0) or Repeat their visit to the “opposite region” before returning
“home” 2 —-1—-0—-1—00r0—1—2—1— 2), an infinite computation
is unavoidable, or such case is not possible.

aj,j € I. Return: see scenario 1; repeat: impossible without b;.

a},j € I;. Return: impossible without d;; repeat: impossible without Js.

ej,j € 1. Return: since d; does not come to region 2, see repeat for d;, below;
repeat: 2ri11.

aj,j € I-. Return: impossible without d;; repeat: in the same step g is
brought into region 1, which will require J> in region 1 in three steps. Since d;
stays in region 2 for at least two steps, Jo is unavailable in region 1 for at least
three steps, so 2r3 is applied.

bj,j € I. Return: if a; comes to the environment, scenario 1 takes place. If a;
returns to region 2, rule 2r3 is applied.

d;,j € I+. Return: impossible without e;; repeat: 1r10.

dj,j € I_UI_g. Return: e; stays in the environment, the simulation stops
and the computation never ends due to 2s1, 2s2; repeat: in the same step ay, is
brought into region 2, which will require Js in region 1 in two steps. Since Js is
unavailable in region 1 for at least two steps, 2r3 is applied.

3. END
Ry ;= {1£1: (Th,out; Fy,in)} U{1£2: (F;, out; Fi41,in) | 1 <i < 5}
U {1£3: (Ts, out), 1f4: (M, out;Ta,in), 1£5: (Ja,out; Tz, in)}
U {1£6 : (T3, 0ut), 1£7 : (b, out; T3,in), 1£8 : (d;, out; T5,in) | j € I}.
Ry ;= {2£1: (Fy,out),2£2 : (Ja, out; Fy,in),2£3 : (T;, out; Fy,in) | 1 < i < 3}
U {2f4: (Fg,out),2£5 : (b;, out; Fs,in), 216 : (d;, out; Fg, in),

27 : (aj,out; Fg,in) | j € I} U{2£8: (e;,out; Fs,in) | j € I}

Once the register machine reaches the final state, g is in region 1 and it
exchanges with object a,, (rule 1r2). If on the previous steps of simulation of

146 A. Alhazov and Y. Rogozhin

counter automaton M object J; was moved to region 2 (by rules 2r6, 2ri11), rule
2r16 will be applied, and the computation never halts. If during the previous
steps of simulation of counter automaton M object Jo was moved to the envi-
ronment (by rules 1r10, 1r11), rule 2r3 will be applied, leading to an infinite
computation. If not, i.e., if object Js is present in region 1, it will be moved to
region 2 (rule 2r2), then object Fy will be moved to region 1 in several steps
(rules 1r14).

It takes Ty, T, T3 and Jo to region 1, in either order. The duty of T3 is
to bring Jo and M to the environment (J2 can be brought to the environment
immediately, or after M if the latter immediately goes to the environment; the
object M can oscillate for indefinite time, but we are interested in halting com-
putations). The duty of T3 is to bring b; and d; to the environment. 77 starts a
chain of exchanges of objects Fj, as a result object Fg will be moved to region 1
and then it removes objects b;, d; (and possible objects a;,e;) from region 2.

We illustrate the end of computations as follows:

FiFyF3FyFsFs Fo MTToT5.J0b;d; =232t
F1FyFsFuFs Fg TAM FoTyT5J0b;d; s 1£1,2£1,252
FoF3FyF5 FT) F1Fo MTo T3 Job;d; =112.23.2s1
FFsFy F5FTh FoTsM FoTbJobid; . 1£2,21,252
Fi Ry FsF T Ts F3sFo MT5J2b;d; s 1£2,2£2,251
FiFFsFsE T Ts FaJoM FoTbbjd; . 162,261,252
F\F,F3sF,FeT T3 F5JoFo MT2b;d; . 1£2,2£3,251
Fi...FsTyT; FgJoT2M Fobjd; _, 1£3,2£1,2£5,252
Fi...F5T1T2Ts JobjFy MFed; =1£51£7,284,2s1
Fy. .. F5bjJoTy ToT3FyMFg d; =1£3:1£6,216,2s2

Fy ... F5b; JoTTo T3 djFy MFg =118284,2s1
Fy ... F5bjd; 2T\ Ty TsF)MF; =416
Fy ... F5bjdj JoMT Ts ToFoFs =12
Fy.. . Fsbjd; JoMTVT5T3 FyFg
We continue in this manner until all objects b;, d; (and possible objects a;, e;)

from the elementary membrane 2 have been moved to the environment. Notice
that the result in the elementary membrane 2 (multiset ¢}) cannot be changed

Towards a Characterization of P Systems 147

during phase END, as object J3 now is situated in the environment. Thus, object
a; cannot enter into region 2 by rule 2r14 and therefore cannot bring object cg
into region 2 by rule 2r8. Recall that the counter automaton can only increment
the first counter c;, so all other computations of P system II; cannot change
the number of symbols ¢; in the elementary membrane. Thus, at the end of
a terminating computation, in the elementary membrane there are the result
(multiset ¢}) and only the one additional object I. |

Theorem 4. NOPy(syms) = NyRE U F, where
N50SEG1 UN5gSEGy C F C N5gFIN.

Proof. While the upper bound of F' results from Theorem 2, the lower bound of
F is satisfied even by one-membrane constructions, see [4]. In what follows, we
deal with proving N;OPs»(syms) = N; RE.

As in the proof of Theorem 3 we simulate a counter automaton M = (d, @, qo,
qr, P) that starts with empty counters and we suggest that the output counter
may be only “incremented”. Again we suppose that all instructions from P are
labeled in a one-to-one manner with elements of {1,...,n} = I, n is a label of the
halt instruction, I’ = I'\{n}, and I = I, UT_UI_y, where we denote by I, I,
and I_q the set of labels for the “increment”, “decrement”, and “test for zero”
instructions, respectively. We use also the next notations: C' = {¢; | 1 < i < d},

Q =Q\{q},and Q = {G;, 0<i < f—1}.

We construct the P system I7, as follows:

I, = (07 [1 [2]2]1vw17w2;EvR1;R272)7
0= EUQU{djvijdjﬂf] |JE I/}U{$17$27$3767167t17t27t37t57t77t9}7
EZCUQ/U{G]’6]76] |jeI/}U{#aFat47t67t8}7

wy = qol.b$1$3t1t5trty H aj H [H i

jer jer 0<i<f-1

Wo = $2t2t3 H bj H dj,

Jer’ Jer’
R; = R@s] Rm« @] Ri,f7i S {1,2}

We code the counter automaton as in Theorem 3 above: region 1 will hold
the current state of the automaton, represented by a symbol ¢; € @; region 2
will hold the value of all counters, represented by the number of occurrences of
symbols ¢, € C, k € D, where D = {1,--- ,d}. We also use the following idea
(called “Circle”) realized by phase “START” below: from the environment, we
bring symbols ¢, into region 1 all the time during the computation. This process
may only be stopped if all phases finish correctly; otherwise, the computation
will never stop.

The rules R; are given by three phases:

1. START: preparation of the system for the computation.
2. RUN: simulation of instructions of the counter automaton.
3. END: terminating the computation.

148 A. Alhazov and Y. Rogozhin

As in Theorem 3 we split our proof into several parts that depend on the
logical separation of the behavior of the system and use the same agreements.

1. START

= {1s1: (I;,out),1s2: (I.ck,in) | k € D},
Rg s = 0.
Symbol I, brings one symbol ¢ € C from the environment into region 1 (rules

1s1, 1s2) where it may be used during the simulation of an “increment” in-
struction and moved to region 2.

2. RUN

Ry, = {1r1: (gigs,out) |0 <i< f—1}
U {1r2: (a;g;,in) | (j : ¢s — q, ky) € P,y € {+,—,=0},k € D}
U {1r3: (a;b;,out), 1ra: (bjb;,in)|j € I'}
U {1r5: ($182, 0ut), 1r6: (#32,in)}
U {127 : (bjdj,out) | j € [, UI_}
U {1r8: (djq,in) | (j : ¢ — q, k—) € P,k € D}
U {119 : (a;b;,0ut) | j € o}

a;
U {1r10: (thn | (j:9i— @, k=0) € PkeD}
U {1r11: (dje;,in), 1r12: (e, f;, out),

1r13: (fjq,in) | (j : ¢ — @, k+) € P,k € D}.

Ry, = {2r1: (aja;,in), 2r2: (a;b;,out) | j € I'}
U {2r3: (a; k,out)\(j:qi—>ql7k—)EP7k€D}
U {2r4: (a;92,0ut), 2r5: (a;$2,0ut) | j € I_}
U {266 - (a,0ut) | § € I,)
U {2r7: (#7 n), 2r8: (#,out)}
U {219 : (bjbj,in) | j € I_ UI_o}
U {2r10: (b;b,in) | j € I}
u{2r11:(13d ut) |j €I, UT_}
U {2r12: (d;b,in) | j € I}
U {2r13: (b, out)}
U{2r14:(i) ckyin) | (¢ — q,k+) € P,k € D}
U {2r15: (djej,in), 2r16: (d;$3,in), 2ri7: (e;, out),

2r18: (b;$3,in) | j € I}
U {2r19: ($283, out)}
U {2r20: (a;ck,out) | (j:¢i — @,k =0) € P,k € D}
U {2r21 : (b;$3,in), 2r22: (a,bj, out), 2r23: (b;$s,0ut) | j € I—o}.

Towards a Characterization of P Systems 149
“Increment” instruction:
qaje;# qidia; f;0%183 b;d;S2 = qugidsage;# a;f;0$:18s b;d;$y =172
qigie;# Giaja; fi0%183 b;d;$2 =1 qugie;# i fi0$185 bjaja;d;$, =220
qqie;# cjibjajajfj5$1$3 d;$o (A)

Now there are two variants of computations (depending on the application of
rule 2r1 or rule 1r3). Consider applying rule 2r1:

quaibje;# Gibjasd; f;b$18s d;$y =220 qigibie# Gif;$195 bjazazbd;$,
:>2r2,2r6,2r13 qlqil;jej# inbjajdjfji)$1$3 dj$2

Thus, we come back to configuration (A) above. As we are interested only in
finite computations, we assume that rule 1r3 will be eventually applied:

qugibje;# Gibjaya; f;0$18s d;Sa =73 qigia;bibie;# Gia; f;0$18s d;$s
=1rd qigia;e;# (jidjfji)bjéj$1$3 d;$2

Now there are two cases: object ¢ is present or is not present in region 1. The
last case leads to an infinite computation. Indeed, object $3 will be moved to
region 2 by rule 2r18, and it comes back to region 1 with object $5 by rule 2r19.
Notice, that the case then object $2 appears in region 1, eventually leads to an
infinite computation by rules 1r5, 1r6 and 2r7, 2r8. Consider the first case, i.e.
then object ¢ is present in region 1:

qlqiajej# (jifljfjf)bjf)jck$1$3 dj$2 :>2r10’2r14

Qgiaje;# Gia; f;$183 bbbjdjer$y =211.2r13

qugiaze;# Gia; f;0;d;0$183 bjcSs

Notice, that now rule 2r14 cannot be applied again, as in this case rule 2r16

will be applied, which leads to an infinite computation (by rules 2r19, 1r5, 1r6
and 2r7,2r8). Otherwise rule 1r7 will be applied:

aqiaje;# G;a; fibyd;b$18s bickSs =7 qga;b;djes# Giaj ;%155 bjck$e
=1ril qz%‘aji)j# didjdjejfjl;$1$3 bjck$2

Notice, that rule 1r12 cannot be applied, as in this case applying of rule 2r16
leads to an infinite computation (see above). So, rule 2r15 will be applied:

150 A. Alhazov and Y. Rogozhin

Q1qia;bi# Giajdje; f;08193 bjcrSe =21 qugiabi# Gia, fi0$185 bjcrd;e;$e
=2r7 qlqiajbj# (}iéjejfjb$1$3 bjckdj$2 =1ri2
f}qlqiajl;jej# inij$1$3 bjckdj$2 =1r13 qiaijej# qlinde)fj$1$3 bjckdj$2

In that way, ¢; is replaced by ¢; and ¢ is moved from region 1 into region

2. Notice that symbols a;,b;,d;, e;, f;, 05,3, b have returned to their original
positions.

“Decrement” instruction:

qab;# qi@a;b$:18s b;d;$2 = quqidiaghi# ;0183 bjd;Sy =172
Qqibi# Giaza;b$i83 bid;S2 =1 qaib;# 4:b$185 bjaja;d;Ss

Now there are two cases: object ¢ is present or is not present in region 2. The
last case leads to an infinite computation, as object $5 appears in region 1 by
rule 2r4 (see above). If object ¢ is present in region 2, then rule 2r3 will be
applied:

@19:b;# 66183 bjazajerd;$2 =223 qq;b# bjaja;crgib$1$s d;$e

Now there are two possibilities: rule 1r3 or 2r1 may be applied. The last case
leads to an infinite computation, as object $2 will be moved to region 1 by rule
2r5 (rule 2r2 cannot be applied, as now object b; is situated in region 1). So,
consider applying rule 1r3:

qlqii)j# bjajajckcji5$1$3 dj$2 =13 qlqiajbjf)j# djckcjii)$1$3 dj$2 =1rd
Qqia;# djckdibbjf)j$1$3 dj$2 =279 Qqia;# djck(j¢6$1$3 bijdj$2 =2rit
qqia;# a;crgibid;b$1$5 b;$s

Now there are two possibilities: rule 1r7 or 2r12 may be applied. The last case
leads to an infinite computation by “Circle”, i.e. by rules 1s1, 1s2. So, consider
applying rule 1r7:

Qgia;aidt a;arckGibdb$i8s b;%e =1 djangiajarh;# a;aickdiqib$18s b;$e
=1 giaja.0;# ajarcrdiquand;b$:8s b;$2
=122 g gia;@aeh;# d;ai01G:$1%3 bjd;b$:

In the way described above, ¢; is replaced by ¢; and ¢ is removed from region 2
to region 1. Notice that symbols a;, b;, d;, b;, §;, b have returned to their original

Towards a Characterization of P Systems 151

positions. Symbol d; returns to region 2 in the first step of the simulation of the
next instruction (the last step of the illustration) and symbol b in the second
step of the simulation of the next instruction.

“Test for zero” instruction:

qa;bi# i@ia;$:8s b;%2 =1t qgidagh;# ;9183 b;$, =172

@qib;# Gi2;8;8185 b;S2 =71 qugib;# ;%183 bja;a;$e

Now there are two cases: object ¢ is present or is not present in region 2. The
first case leads to an infinite computation, as object @; will be situated in region
1 by rule 2r20, that enforce to applying rule 2r21 or 2r23. So, object $5 will be
moved in region 1, causing an infinite computation. Consider the second case,
i.e., when object ¢y is not present in region 2:

Qqibi# §:$183 byaja; S =22 qqibj# Gibja;$18s ;8 =17
q1q;bibja;# G:$1%3 a;82 =" qgia;# G;bjb;$18s a;8, =20
Qqia;# %183 4505082 =222 qqia;# 4:a;D;$185 b8y =1

aidjgiabi# 4:$1%3 b;82 =10 ga;b;i# qa;Gi$183 b;$e

In this case, g; is replaced by ¢;. Notice that symbols aj, b;, b, ¢; have returned
to their original positions.

3. END
Ry ;= {1£1: (gsts,out), 1£2: ($1t3,0ut), 1£3: (333, out),
14 : (bts,out), 1£5 : (t3,in)}
U {1£6 : (t1t2,out), 1fT7: (tots,in), 1£8: (tats,out), 1£9: (tsts,in),
1£10 : (telr, out), 1£11 : (t7tg,in), 1£12: (tsty, out), 1£13: (toF,in)}.
Ry ;= {2£1: (gst1,in) ,2£2: (qsts, out), 2£3: (t1t2, out),
2f4: (F,out), 2£5: (FI.,in)}
U {2£6: (I.b;,out), 2£7 : (I.dj,out) | j € I'}
U {2£8: (182, 0ut)}.
At first, objects ¢y, $1, $3, b will be moved to the environment by rules 1f1 - 1£4,
and after that all objects b;,d; and $2 will be moved from region 2 to region 1.

Hence, in region 2 now there are only the objects ¢; (representing the result of
the computation) and only one additional object I.. a

5 Conclusions

In this paper we proved that any set of natural numbers containing zero
generated by symport/antiport P systems with two membranes and minimal

152 A. Alhazov and Y. Rogozhin

cooperation is finite (for both symport/antiport P systems and for purely sym-
port P systems), while one additional object in the output membrane allows
symport/antiport P systems as well as for purely symport P systems with two
membranes and minimal cooperation generate any recursively enumerable sets
of natural numbers without zero. Thus we improve the result from [1] for sym-
port/antiport P systems with two membranes and minimal cooperation from
three objects down to one object and for purely symport P systems from six
objects down to one object. Therefore, these results are optimal.

References

1. A. Alhazov, R. Freund, Yu. Rogozhin: Computational Power of Symport/Antiport:
History, Advances, and Open Problems. Membrane Computing, International
Workshop, WMC 2005, Vienna, 2005, Revised Selected and Invited Papers (R.
Freund, Gh. Piun, G. Rozenberg, A. Salomaa, Eds.), Lecture Notes in Computer
Science 3850 (2006) 1-30.

2. A. Alhazov, R. Freund, Yu. Rogozhin: Some Optimal Results on Communica-
tive P Systems with Minimal Cooperation. Cellular Computing (Complexity As-
pects), ESF PESC Exploratory Workshop (M.A. Gutiérrez-Naranjo, Gh. Paun,
M.J. Pérez-Jiménez, Eds.), Fénix Editora, Sevilla, (2005) 23-36.

3. A. Alhazov, M. Margenstern, V. Rogozhin, Yu. Rogozhin, S. Verlan: Communica-
tive P Systems with Minimal Cooperation. Membrane Computing, International
Workshop, WMC 2004, Milan, 2004, Revised Selected and Invited Papers (G.
Mauri, Gh. Padun, M.J. Pérez-Jiménez, G. Rozenberg, A. Salomaa, Eds.) Lecture
Notes in Computer Science 3365 (2005) 161-177.

4. A. Alhazov, Yu. Rogozhin: Minimal Cooperation in Symport/Antiport P Systems
with One Membrane. Third Brainstorming Week on Membrane Computing (M.A.
Gutiérrez-Naranjo, A. Riscos-Nunez, F.J. Romero-Campero, D. Sburlan, Eds.)
RGNC TR 01/2005, University of Seville, Fénix Editora, Sevilla (2005) 29-34.

5. A.Alhazov, Yu.Rogozhin: Towards a Characterization of P Systems with Minimal
Symport/Antiport and Two Membranes. In: Pre-proc. of the 7th Workshop on Mem-
brane Computing, WMC7, 17—-21 July, 2006, Lorentz Center, Leiden (2006) 102-117.

6. A. Alhazov, Yu. Rogozhin, S. Verlan: Symport/Antiport Tissue P Systems with
Minimal Cooperation. Cellular Computing (Complezity Aspects), ESF PESC Ex-
ploratory Workshop (M.A. Gutiérrez-Naranjo, Gh. Paun, M.J. Pérez-Jiménez,
Eds.), Fénix Editora, Sevilla (2005) 37-52.

7. F. Bernardini, M. Gheorghe: On the Power of Minimal Symport/Antiport. Work-
shop on Membrane Computing, WMC 2003 (A. Alhazov, C. Martin-Vide, Gh.
Paun, Eds.), Tarragona, 2003, TR 28/03, Research Group on Mathematical Lin-
guistics, Universitat Rovira i Virgili, Tarragona (2003) 72-83.

8. F. Bernardini, A. Piun: Universality of Minimal Symport/Antiport: Five Mem-
branes Suffice. Membrane Computing, International Workshop, WMC 2003, Tar-
ragona, Revised Papers (C. Martin-Vide, G. Mauri, Gh. Paun, G. Rozenberg, A.
Salomaa, Eds.), Lecture Notes in Computer Science 2933 (2004) 43-45.

9. R. Freund, M. Oswald: GP Systems with Forbidding Context. Fundamenta Infor-
maticae 49, 1-3 (2002) 81-102.

10. R. Freund, M. Oswald: P Systems with Activated/Prohibited Membrane Channels.
Membrane Computing International Workshop, WMC-CdeA 02, Curtea de Arges,
2002. Revised Papers (Gh. Pdun, G. Rozenberg, A. Salomaa, C. Zandron, Eds.),
Lecture Notes in Computer Science 2597 (2003) 261-268.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

Towards a Characterization of P Systems 153

R. Freund, A. Pdun: Membrane Systems with Symport/Antiport: Universality Re-
sults. Membrane Computing International Workshop, WMC-CdeA 02, Curtea de
Arges, 2002. Revised Papers (Gh. Paun, G. Rozenberg, A. Salomaa, C. Zandron,
Eds.), Lecture Notes in Computer Science 2597 (2003) 270-287.

P. Frisco: About P Systems with Symport/Antiport. Second Brainstorming Week
on Membrane Computing (Gh. Pdun, A. Riscos-Nunez, A. Romero-Jiménez, F.
Sancho-Caparrini, Eds), TR 01/2004, Research Group on Natural Computing,
University of Seville (2004) 224-236.

P. Frisco, H.J. Hoogeboom: P Systems with Symport/Antiport Simulating Counter
Automata. Acta Informatica 41, 2-3 (2004) 145-170.

P. Frisco, H.J. Hoogeboom: Simulating Counter Automata by P Systems with
Symport/Antiport. Membrane Computing International Workshop, WMC-CdeA
02, Curtea de Arges, 2002. Revised Papers (Gh. Paun, G. Rozenberg, A. Salomaa,
C. Zandron, Eds.), Lecture Notes in Computer Science 2597 (2003) 288-301.

L. Kari, C. Martin-Vide, A. Paun: On the Universality of P Systems with Minimal
Symport/Antiport Rules. Aspects of Molecular Computing - Essays dedicated to
Tom Head on the occasion of his 70th birthday, Lecture Notes in Computer Science
2950 (2004) 254-265.

M. Margenstern, V. Rogozhin, Yu. Rogozhin, S. Verlan: About P Systems with
Minimal Symport/Antiport Rules and Four Membranes. Fifth Workshop on Mem-
brane Computing (WMC5), (G. Mauri, Gh. Pdun, C. Zandron, Eds.), Universitd
di Milano-Bicocca, Milan (2004) 283-294.

C. Martin-Vide, A. Paun, Gh. Paun: On the Power of P Systems with Symport
Rules, Journal of Universal Computer Science 8, 2 (2002) 317-331.

M.L. Minsky: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs, New
Jersey (1967).

A. Paun, Gh. Pdun: The Power of Communication: P Systems with Sym-
port/Antiport. New Generation Computing 20 (2002) 295-305.

Gh. Paun: Computing with Membranes. Journal of Computer and Systems Science
61 (2000) 108-143.

Gh. Pdun: Membrane Computing. An Introduction. Springer-Verlag, Berlin (2002).
Gh. Piun: Further Twenty Six Open Problems in Membrane Computing (2005).
Third Brainstorming Week on Membrane Computing (M.A. Gutiérrez-Naranjo,
A. Riscos-Nuifez, F.J. Romero-Campero, D. Sburlan, Eds.) RGNC TR 01/2005,
University of Seville, Fénix Editora, Sevilla (2005) 249-262.

Gh. Paun: 2006 Research Topics in Membrane Computing. Fourth Brainstorming
Week on Membrane Computing, vol. 1 (M.A. Gutiérrez-Naranjo, Gh. Paun, A.
Riscos-Nuifiez, F.J. Romero-Campero, Eds.), Fénix Edit., Sevilla (2006), 235-251.
G. Rozenberg, A. Salomaa (Eds.): Handbook of Formal Languages (3 volumes).
Springer-Verlag, Berlin (1997).

Gy. Vaszil: On the Size of P Systems with Minimal Symport/Antiport. Fifth Work-
shop on Membrane Computing (WMC5) (G. Mauri, Gh. Paun, C. Zandron, Eds.),
Universita di Milano-Bicocca, Milan (2004) 422-431.

S. Verlan: Optimal Results on Tissue P Systems with Minimal Symport/ Antiport.
Presented at EMCC meeting, Lorentz Center, Leiden (2004).

S. Verlan: Tissue P Systems with Minimal Symport/Antiport. Developments in
Language Theory, DLT 2004 (C.S. Calude, E. Calude, M.J. Dinneen, Eds), Lecture
Notes in Computer Science 3340, Springer-Verlag, Berlin (2004) 418-430.

P Systems Webpage, http://psystems.disco.unimib.it

Expressing Control Mechanisms of Membranes
by Rewriting Strategies*

Oana Andrei', Gabriel Ciobanu?3, and Dorel Lucanu?
L INRIA-LORIA, Nancy, France
Oana.Andrei@loria.fr
2 “A1.Cuza” University of Iasi, Faculty of Computer Science
3 Romanian Academy, Institute of Computer Science, Iasi
{gabriel, dlucanu}@info.uaic.ro

Abstract. In this paper we present a rewriting semantics of membrane
systems based on strategies. We use strategies to describe the control
mechanisms in membranes. We provide strategies for maximally parallel
rewriting, and for maximally parallel rewriting with priorities between
rules. Maximally parallel rewriting with promoters or inhibitors requires
an additional encoding of the rules.

1 Introduction

In this paper we work with membrane systems (called also P systems) defined
in [9]. A membrane consists of a multiset w of objects, a set R of evolution rules,
and a control mechanism C' describing the way in which the rules are used to
modify the multiset w in an evolution step. A very simple way to specify such a
membrane is:

membrane M
contents w
evolution rules R
control C

end

An evolution step of a membrane M modifies its contents w using the evolution
rules according to the control mechanism C'. We have various control mechanisms
in membrane systems inspired by some biological entities. Here we consider the
control mechanisms given by maximally parallel rewriting, maximally parallel
rewriting with priorities, maximally parallel rewriting with promoters and/or
inhibitors. Maximally parallel rewriting means that as many as possible evolu-
tion rules are applied in parallel. A (strong) priority relation among rules means
that in each region we have a partial order relation on the set of rules, and a rule
can be chosen (to process a multiset of objects) only if no rule of a higher priority
is applicable in the same region. Promoters and inhibitors formalize the reac-
tion enhancing and reaction prohibiting roles of various substances (molecules)

* This work has been supported by the research grant CEEX 47/2005, Romania.

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 154-169, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Expressing Control Mechanisms of Membranes by Rewriting Strategies 155

present in cells. In membrane systems, promoters and inhibitors are represented
as multisets of objects associated with certain sets of rules. A rule from such a
set can be used only if all the promoting objects are present, and none of the
inhibiting objects is present in its membrane.

A rewriting system (X, A, R) consists of a signature X, a set of axioms A, and
a set of rewriting rules R. The rewriting process defined by (X, A, R) is given
by rewriting relation defined by R over Y-terms modulo the axioms A [8]. A
strategy for (X, A, R) controls the rewriting process in the sense that only some
of the rewriting paths are allowed. Several strategy languages are proposed in
the literature [10,7,5].

A membrane M defines a rewriting system (X, A, R), where X includes the
concatenation operator, A includes axioms for associativity, commutativity, and
identity of the concatenation, and R includes the evolution rules. In this paper
we answer the question whether the control mechanisms in membranes can be
described using strategies. We use the strategy language [11] because it includes a
complete set of strategy operators and it is independent of the rewriting engine.
We also use the Maude implementation presented in [7] to exhibit that the
strategies we define for membrane systems behave as expected.

1.1 Examples of Membranes with Priorities and Promoters

We present some examples of membranes implementing arithmetical operations
defined over the numbers of objects. More details about other arithmetical oper-
ations on numbers represented by using unary and binary compact encodings are
described in [4]. Here we emphasize the use of priorities and promoters as control
mechanisms in membrane computing, presenting membranes with priorities and
promoters for multiplication.

Figure 1 presents a membrane M; with priorities for multiplication of n (ob-
jects a) by m (objects b), the result being the number of objects d in membrane 0.

membrane M;
contents a”"b™u
evolution rules O

{1 :bv — dev a™b™u
lr:av— u
ls:eu— dbu bv — dev > av — u
by :au — v
control
pri(ﬁl > Zz,fg, > {y)
end

eu — dbu > au — v

Fig. 1. Multiplication with priorities

In this membrane we use the priority relation between rules; for instance bv —
dev has a higher priority than av — wu, meaning the second rule is applied only
when the first one cannot be applied anymore. Initially only the rule au — v can
be applied, generating an object v which activates m times the rule bv — dev

156 O. Andrei, G. Ciobanu, and D. Lucanu

(applied in parallel). Then av — w consumes an a, and transform v into wu.
Now eu — dbu is applied m times, followed by another change of u into v by
consuming an a (this is done by the rule au — v). The procedure is repeated
until no object a is present within the membrane. Note that each time when one
object a is consumed, then m objects d are generated. This control mechanism
is denoted by pri(¢y > o, l3 > {4).

Figure 2 presents a membrane My with promoters for multiplication of n (ob-
jects a) by m (objects b), the result being the number of objects d in membrane
0. The object a is a promoter in the rule b — bd|,, i.e., this rule can only be
applied in the presence of object a. The available m objects b are used in order
to apply m times the rule b — bd|, in parallel; based on the availability of a
objects, rule au — wu is applied in the same time and consumes an a. The pro-
cedure is repeated until no object a is present within the membrane. Note that
each time when one object a is consumed, then m objects d are generated. This
control mechanism is denoted by prom(¢1,¢2).

membrane M>

contents a”"b™u 0
evolution rules n m
a b"Mu
l1:b— bd|g
b2 :au — u b—>bd|a
control au — u

prom ({1, 42)

end

Fig. 2. Multiplication with promoters

2 Strategies in Rewriting Systems

In general terms, a strategy is setting the objective(s) of a computation. In
term rewriting systems, a strategy is an expression s involving rewriting rules
and strategy operators. The objectives of s are strategic transitions t = t',
where t and t’ are terms. The tactics indicate how we are supposed to reach the
objectives of a strategy. A tactic of a strategic transition ¢ — t’ is a rewriting
sequence t = tg — --- — t, = t' denoted shortly by ¢ ~ ¢/ which applies the
rewriting rules according to a strategy s. We write ¢ ~», t’ when we want to
specify the length of the rewriting sequence.

A rewriting strategy controls the rewriting process in the sense that only
some of the rewriting paths are allowed, namely those given by tactics. For
instance, computation of the arithmetical expressions involving associative and
commutative + and *, without parenthesis, could follow several pathways.

24+3%5—=2+15—17
24+3%5=24+5%x3—-24+15—17
24+3%x5—=5%5—25
243x5=2+5%x3=5+2%x3—-5+6—11

Expressing Control Mechanisms of Membranes by Rewriting Strategies 157

Only some of them are correct according to the usual arithmetical rules (for
the above example, these are the pathways leading to 17). We aim to define

a strategy eval such that 24+ 3 %5 2l 17, In general, a rewriting strategy

language consists of expressions s constructed with rewriting rules (viewed as
basic strategies) and strategy operators such that expr = expr’. Here we use a
strategy language inspired by [11]. In this language, eval can be expressed as
repeat(multiply < add). This means that we apply multiplication repeatedly
until it is not possible anymore, followed by addition. In the sequel we provide
the definition of the strategy language and illustrate it by examples.

Basic strategies. Each evolution rule ¢ : v — v defines a strategy operator

with the operational semantics given by the strategic transition w Lo , where
w = u, w' = v, and these equalities are modulo associativity, commutativity, and
identity. The only rewriting tactic corresponding to such a strategic transition
is w ~»1 w', i.e., the rewriting of length one defined by the rule. The uniqueness
of the tactic is given by the fact that the evolution rules have not variables.

Identity. We consider a strategy operator id with the operational semantics

given by w 19, w, where w is a multiset. The only rewriting tactic corresponding
to such a strategic transition is w ~=g w, i.e., the rewriting of length zero.

Congruence. Each operator name (term constructor) defines a strategy operator
whose parameter-strategies are applied to its arguments. Since in membrane
systems we have only one operator, namely the associative and commutative
concatenation, we use a specific strategy operator mset with a variable number
of parameter-strategies. The operational semantics of the operator mset is

S1 12 Sn /

w) =W ... W, = wh
mset(S1,...,8n) , ,
Wy - Wy, —————5 W] - wh

Remark 1. The concatenation operator has variable arity due to its asso-
ciativity and identity laws. For instance, aabbb can be written as (aa, bbb),
(a,a,b,b,b), (a,ab,bb), and so on. The notation [assoc comm id: ¢] intends
to capture this feature together with commutativity of . In order to avoid any
confusion, we prefer to denote this variadic operator by mset. Therefore we use
mset(sy, ..., S,) instead of [assoc comm id: €](s1,...,s,). The general case of
congruence provided by operators with attributes is discussed in [3].

. o . . 84 .
If w; ~ w} is a rewriting tactic of w; — w} for i = 1,...,n, then wy - - - wy, ~

. . mset(S1,...,8n) .
WY Wy~ e~ w) - w) 1s atactic of wy - wy, wf - - - w),. Since

the concatenation is associative and commutative, the rewriting tactics can be
combined in an arbitrary order.

mset ({4,

id
Example 1. Considering the rules in Figure 1, we have abu i) bv because

au 2 v, b , b, abu = aub, and vb = bv.

158 O. Andrei, G. Ciobanu, and D. Lucanu

Sequential composition. si;Ss applies s; and, if it succeeds, then it applies ss.
The operational semantics of s1; s is given by

S1 ’ r 52 "
w—w w — w

s1382 .,
2020w

. oy . S . oy .
If w ~ w' is a rewriting tactic of w — w’ and w’ ~ w” is a rewriting tactic of
s . o, . S1;82
w' =% w”, then w ~ w' ~ w" is a rewriting tactic of w —— w"’

mset(l4,id)
_

Ezxample 2. Since abu bv and by 2 dev, we have

mset(44,id);¢1
aby —————

dev.

Non-deterministic choice. s1 + s2 chooses between the strategies s; and so such
that the chosen strategy succeeds. The operational semantics of s1 + so is given
by

S1 7 S2 12

w—w w—w
S1+S2 , S1+S2 ,
— W w—w

. oy . . S S .
If w ~ w is a rewriting tactic of w —~ w’ or w — w’, then w ~ w' is a

oy . s1+s
rewriting tactic of w = w/'.

Ezample 3. Considering the evolution rules in Figure 2, we have abu Lth,

or abu 242, obdu.

Definition 1. We say that a strategy s fails on w iff there is no w' such that
w5 w. We write w 1.

In other words, w =1 means that for any w’, w = w’ has no rewriting tactic.
The above definition applies to all the strategies of the language.

Deterministic choice. s1+s2 chooses the left argument first; the second strategy
is considered if the first strategy fails. The operational semantics of s; <+ ss is
given by

S1 / S1 52 "
w — w w—T w-—=—w
S1¢+s2 ’ S14S2 7
— W w—w

. o . . S . o . .
If w ~ w' is a rewriting tactic of w — w’, then w ~» w’ is a rewriting tactic of

S81¢+s s e . ope
w ——2 w'. If w = w’ has no rewriting tactic for any w’, then any rewriting
. s . e . “+s
tactic of w =2 w” is a rewriting tactic of w 22 ',

Ezample 4. Using again the evolution rules in Figure 1, we have abv L4, adev.

We cannot deduce abv o hin: N bu because £; succeeds on abv. On the other hand,

. +0
¢, fails on adev and so we have adev 2272,

Expressing Control Mechanisms of Membranes by Rewriting Strategies 159

Strategy definition. A strategy definition is an expression (z1,...,2n) def s,
where any free variable in s belongs to {z1, ..., 2, }, and ¢ is a strategy identifier.
The operational semantics is given by
s[z1:=81,..,2n1=8n] ,
. def
f =
@(81,0080) iz, 2n) = 8
RSl TN
where s[z1 1= $1,...,2, 1= 8y] is the strategy expression obtained from s by

replacing the free occurrences of the variables z; with s;. Each rewriting tactic

s[z1:=81,...,2n1=8n] @(81,--,8n) ,

of w w’ is a rewriting tactic of w —"5 w'.

Fizpoint operator. The fixpoint operator uz(s) allows to define strategies that
repeatedly apply a certain strategy s. For instance, the strategy repeat, which
applies s as many times as possible, is defined as

repeat(s) def nz((s; z) «+id)
The operational semantics of uz(s) is given by

slz=pz(s)]
sle=p=]

pz(s)
w—> w

The fixpoint operator p binds any occurrence of variable z in strategy s.

s[zi=pz(s)] z(s) ,
L SN .

" . . " . Iz
Each rewriting tactic of w w’ is a rewriting tactic of w —> w

3 Strategy Semantics of Control Mechanisms

In membrane systems, a computation step w = w’ can be presented as a tran-
sition from a contents to another contents according to a control mechanism
involving priorities and/or promoters and/or inhibitors. The computing engine
is represented by the maximal parallel rewriting. When we refer to a sequential
implementation for membrane computing, such a computation is translated in
sequential rewritings. Such a sequential implementation based on rewritings is
presented in [1]. In this paper, we consider the membrane computation steps as
objectives provided by strategies, and their sequential implementations as tactics
of these strategies.

We investigate whether we can find a strategy s such that w = w’ iff w > w'.
We give a strategic semantics for maximal parallel rewriting, as well as for maxi-
mal parallel rewriting with priorities between rules. However we find that a more
powerful mechanism than strategies is needed to provide semantics for maximal
rewriting with promoters or inhibitors. A useful encoding of the rules can solve
this problem, and finally we can provide the semantics for maximal rewriting of
membrane systems involving promoters/inhibitors. The encoding can be used in
a uniform way to provide the strategy semantics for simple maximal rewriting,
maximal rewriting of membrane systems with priorities, and maximal rewriting
of systems with promoters/inhibitors.

160 O. Andrei, G. Ciobanu, and D. Lucanu

3.1 Strategic Semantics of Maximal Parallel Rewriting

Let R be a set of evolution rules, and w a multiset of objects. If £: u — v is an

. ¢,id .
evolution rule in R, then w is ¢-irreducible if w MT. In other words, w is

l-irreducible iff there is no w’ such that w — w’ applying the rule labelled by £.
Moreover, w is R-irreducible if w is f-irreducible for all £ : u — v € R. We say
that w is mazximally parallel rewritten in w' iff w = uy -+ upz, W = vy vy2,
l; cu; — v;isarulein R fori =1,...,n, n > 0, and z is R-irreducible. We
write w =5 w'.

Given a set R = {{; : u; — v; | 1 <4 < n} of evolution rules, we define a
strategy

def
mpr = (s + -+ + sp)
where s; = mset({;,z +1id), fori=1,...,n.

Since the definition of this strategy mpr depends on R, we prefer to write it in
an equivalent form

mpr(R) def mset({1, mpr(R) «++id) + - - - + mset (L, mpr(R) 4 id).

If R=0, then w MT for any w.

Theorem 1. Given a set R of evolution rules, then

. mpr(R)
w=gpw iff w—— w'.

Proof. We first assume that w =g w’. We have w = u;, -+ - u;, 2, w'=v;, -+ vy, 2,
rules £;; : u;;, — v;; from R = {{; :u; — v; | i =1,...,n} for j =1,...,k,

25
. . . R . .
k > 0, and z is R-irreducible. We prove w mer(B), w’ by induction on k.

If £k =1, then the proof is:

id

mpr(R)
z —> z— 2z

mpr(R)4id 2;
Zz— 2 Ui — Uy
Si
U2 — ViZ

s1++sn

U 2 —> V432
mpr(R)

U2 — ViR

. . mpr(R)
where ¢ = ;. If £ > 1, then u; 2 ———> v;, 2 as above, and u; ... u;,_,

R
V1 ...v;,_, by the inductive hypothesis. We get w mer(B), w’ by the definition

of the fixpoint operator, and by the fact that the concatenation in the left hand

side does not produce new reducible multisets.
mpr(R)

mpr

Conversely, if w w’ then we prove w =g w’ by induction on the
depth of the proof tree. By the definition of mpr(R), we have rules ¢; : u; — v;

. mpr(R)
in R, w; and w} such that w = ww;, w' = v;w}, and w; w). By the

!

i
inductive hypothesis we have w; = g w}, and we get w = w;w; =g v;w, = w' by
the definition of =. a

Expressing Control Mechanisms of Membranes by Rewriting Strategies 161

Ezample 5. If R consists of rules ¢1 : ab — ¢ and /5 : bb — d, then the inference
tree for aabbb —25 cda is:
mer(R) g 0l g

R)«id 2
q mpr(B)did bb L2,

abb 2% da
abb 2252, 4q
abb mer(R), da

abb mpr(R)id, da ab 5 ¢

aabbb 2% cda

aabbb 2222, cda

aabbb RECON cda

membrane M
contents a a bbb
evolution rules
/1 : ab->c
l2 : Db ->d
control
mpr (41, £2)
end

is represented in Maude strategy language [7] as follows:

(mod MM is
including PSCONFIGURATION .
op M : -> Label .
ops a b cd : -> 0bj
vars W W’ W’’ : Soup .
var L : Label .
op contents : -> Membrane .
eq contents = <M | aabbb>.

rl [11] : ab = c .
rl [12] : b b =>4d .
endm)

(stratdef MM-STRAT is
strat mpr = (matchrew W’ W’’ by W’ using top(12) ,
W>’ using (mpr orelse idle)) |
(matchrew W’ W’’ by W’ using top(1l1) ,
W’’ using (mpr orelse idle))
endsd)

The sorts O0bj, Soup, Label, Membrane, and the concatenation operator are
defined in the module PSCONFIGURATION. Concatenation is denoted by , and
it is declared with the attributes associativity, commutativity, and identity [6].

162 O. Andrei, G. Ciobanu, and D. Lucanu

The strategy s; = mset(¢;, mpr(R) «id) is represented by the expression
matchrew W’ W’’ by W’ using top(4;) , W’’ using (mpr orelse idle),
and s1 + so is represented by s | s2. We use srewall command in order to see
how the contents is modified using mpr strategy. This command performs the all
rewritings supplied by a given strategy.

Maude> (srewall contents using matchrew < L | W > by W using mpr .)
rewrites: 4079 in 27ms cpu (27ms real) (145699 rewrites/second)
rewrite with strategy :

Solution 1 : <M|dac>
Solution 2 : <M|bcc>
Maude>

3.2 Strategic Semantics of Maximal Parallel Rewriting with
Priorities

Let R be a set of evolution rules together with a partial order . If £ = ¢, then
we say that ¢ has a greater priority than /. An evolution rule is applied in an
evolution step only if no rule of a higher priority can be applied.

Definition 2. Let R be a set of evolution rules together with a priority rela-
tion =. We say that w is maximally parallel rewritten in w’ w.r.t. R, and write
w =g W, iff WS neprw) W, where maz(R,w) represents the highest priority
evolution rules of R which are applicable to w.

Note that maz(R, w) is a discrete partial ordered set, and w = ,q5(g,w) W' is de-
fined as in 3.1. However, we cannot apply the strategy mpr(maz(R,w)) because
it depends on multiset w (usually a strategy is independent of the multiset).

Definition 3. Let R be a set of evolution rules together with a priority relation
= such that {€; - u; — v; | i =1,...,n} is the subset of the rules with mazimal
priority. Then the strategy pri(R) is defined as follows:

pri(R) s+ s,
s; = mset(;, pri(filter(R, £;)) <+ id) 4+ pri(R\ {L;})
fori=1,...,n,

where filter(R,¥;) is obtained from R by removing the rules having lower priority

than ¢;. If R = 0, then w 2rilf), — 1.

Ezample 6. Let us suppose that R consists of /1 : ab — ¢ > {5 : bb — d.
We have: def
pri(R) = s1 (£1 is the only maximal element in R)

s1 = mset({q, pri(¢1) +id) 4 pri(f2)
pri(fy) Lef mset ({1, pri(¢;) 4 id)
pm(fg) = mset(f%pm(ﬁg) 4 id)

The inference tree for aabbb = ccb is:

Expressing Control Mechanisms of Membranes by Rewriting Strategies 163

p 2 g by
p 2 ab L ¢
abp "D
abb 22,
abb prith)d4id, cb ab 4, c

aabbb mset (£1,pri(£y)<id) ccb

aabbb mset (£ ,pri(filter(R,£1))<id)

cch

aabbb fﬁjﬁf?» cch
membrane M
contents a a bbb
evolution rules
/1 : ab->c
f2 : bbb ->d
control
pri(4y = £2)
end

is represented in Maude strategy language as follows:

(mod MM is
including PSCONFIGURATION
op M : -> Label
ops a b cd : -> 0bj
vars W W’ W’’ : Soup .
var L : Label
op contents : -> Membrane
eq contents = <M | a a b b b>.

rl [11] a b=>c.
rl [12] : b b =>4 .
endm)

(stratdef MM-STRAT is
strat pril = matchrew W’ W’’ by W’ using top(1l1l) ,
W’’ using (pril orelse idle)
strat pri2 = matchrew W’ W’’ by W’ using top(12) ,
W’’ using (pri2 orelse idle)
strat pri = pril orelse pri2
endsd)

Even rule 12 matches the contents, it cannot be used because 11 has a higher
priority:

Maude> (srewall contents using xmatchrew < L | W > by W using pri .)
rewrites: 1530 in 10ms cpu (10ms real) (139116 rewrites/second)
rewrite with strategy :

Solution 1 : <M|bcc>

Maude>

164 O. Andrei, G. Ciobanu, and D. Lucanu

Theorem 2. Given a set R of evolution rules together with a priority relation —,

. pri(R)
w=Sgpw iff w—w.

Proof. (Sketch) The main idea is similar to that in the proof of Theorem 1.
The correct handling of the priorities is assured by the following facts:

— only rules with maximal priority are applied,

— once a rule is applied, all the rules having smaller priorities are removed from
the current set of rules by using filter operator, and

— if a rule with a maximal priority cannot be applied, then it is removed. 0O

3.3 Strategic Semantics of Maximal Parallel Rewriting with
Promoters

An evolution rule with promoter is a rewriting rule of the form ¢ : w — v|,, where
the promoter p does not necessarily occur in u. Such a rule can be applied in
an evolution step w = w’ only if w contains both u and p. Note that a single
occurrence of a promoter can be used by more than one rule even the promoter
can be consumed by some other rule. The presence of the promoter makes it
possible to use a rule with promoter as many times as possible, without any
restriction.

Let R consist of the following rules with promoters: ¢; : ag — ¢|p and £3 : bp —
d|y. Consider s a strategy applying the rules R over abpq. If s applies first (1,
then the information that promoter p was present in the initial contents is lost,
and /5 cannot be applied anymore. If s applies first /5, then the information that
promoter ¢ was present in the initial contents is lost, and ¢; cannot be applied
anymore. Therefore we claim that there is no strategy expressed in terms of rules
R and the existing strategy operators which can implement the maximal parallel
rewriting with promoters. A more powerful mechanism is needed. We show that
an encoding of the membrane specification together with the strategies defined
over the corresponding encoded rules are enough for implementing the maximal
rewriting with promoters.

Given a set R of evolution rules with or without promoters, we construct a set

=~ ~ R
R of rewrite rules and a strategy prom(R) such that w =g v’ iff w promif), w'.

Let pset(R,w) denote the set of promoters occurring in w w.r.t. the set of rules
R. The set R consists of the following rules:

compute : w — &(w, pset(R, w)),
forget : w'(w, s) — w'w, together with

—arule ¢ : w'(wu, s) — w'v(w,s) for each rule £ : u — v without promoter,
and
arule £ : w'(wu, ps) — w'v(w,ps) for each rule ¢ : u — v|, with promoter,

where w’, w range over multisets, and s ranges over the sets of promoters.

Expressing Control Mechanisms of Membranes by Rewriting Strategies 165

The rule compute stores the set of promoters occurring in w as the second
component of the pair, and this component remains unchanged during the appli-
cation of the evolution rules. This information is used by the rules with promot-
ers: such a rule is applied only if its promoter is present in the second component.
Note that the processed part w’ lies in the front of the pair (w, s), and it is not
affected by the next evolution rules applied in the current step; the evolution
rules consumes only objects from the first component w of the pair.

Definition 4. We suppose that R = {{; : u; — v; | i =1,...,n}, and let R be
computed as above. Then the strategy prom(R) is

~

prom(R) o/ compute; repeat(f; + - - - + £,,); forget

Ezample 7. For R given above, R consists of compute, forget, together with
4y s w'(aqw, ps) — w'c(w, ps) and

0y : w’ (bpw, gs) — w'd(w, ps)

prom(R)

The inference tree of abpg ————= cd is obtained as follows:

T12

TQI

(abpq, pa) > c(bp, pq)

1+0
(abpq, pq) ——= c(bp, pq)

h
c(bp, pg) = cd(e, pq)

040

c(bp,pg) 22 cd(e,pq) cd(e, pq) 221

Tg:

compute
abpq <=2 (abpg, pq) (abpq, pq

Finally,

c(bp, pq

) repeat ({1 +£2) Cd(&‘,pq)

Th Ts
) (81+45);repeat ({1 +02)

(abpg, pq cd(e,pq)

) repeat (£1+02) cd(g,pq)

compute;repeat (£1+05)

T3 cd(e, pq)

cd(e, pq)

forget
e

cd

prom(R)
L AN

abpq cd

We have the following encoding;:

membrane M
contents a a b
evolution rules
l1 : aq—>clp
l : b p—>d |q
control
prom({q, £2)

end

rewsystem M
rewriting rules
compute : W — e (W, p q)
forget : W' (W, pq — W W
G WWaq, pW"D — W W, p W)
o : WWbp, pW"D — W dW, p W)
strategy
prom(fq, £2)
end

166 O. Andrei, G. Ciobanu, and D. Lucanu

The encoded membrane M is represented in Maude strategy language as follows:

(mod MM is
including PSCONFIGURATION .
op M : -> Label .
ops abcdpgq: ->0bj
vars S S’ WW” XY : Soup .
var L : Label .
var ES : EncodedSoup .
op contents : -> Membrane .
eq contents =< M | abpaq>.

rl [compute] : W => empty (W, pq) .
rl [forget] : W (W ,pqg) =>W W.

rl [11] : W (Waq,pW") => W c) (W, pW")
r1[12] : W (Wbp,qW')= d (W, qw)

endm
)
(stratdef MM-STRAT is
strat prom = top(compute) ; (11 | 12) ! ; top(forget)
endsd)

The module PSCONFIGURATION additionally includes a sort EncodedSoup and an
operator:

¢

op _“(_“,_¢) : Soup Soup Soup -> EncodedSoup .

repeat () is represented in Maude strategy language by !.
The strategy prom works properly:

Maude> (srewall contents using xmatchrew < L | W > by W using prom .)
rewrites: 766 in 8ms cpu (9ms real) (85120 rewrites/second)

rewrite with strategy :

Solution 1 : <M |dc>

Maude>

Theorem 3. Given a set R of evolution rules with promoters, then
. R
wSgpw if w2y
repeat(l71+---+l7n)
repeatititin),

Proof. (Sketch) w =g w' iff (w,pset(R,w)) (w', pset(R, w)).
If w =g w', then it follows that w = wu;, ---u;, 2, W' = vy, -+ vy, 2, either £;; :

ui; — vi; or Ly, 1 uy, — vilpisarulein R={{; :u; — v |i=1,...,n} for

j=1,...,k k>0,and z is R-irreducible. If £;, : u;; — v, |, is a rule involving a

promoter p, then p occurs in w and therefore it belongs to pset(R, w). We prove
prom(R)

that w —— w’ by induction on k.

O14-+L,
Conversely, if (w, pset(w)) ropeattlutthn), (w', pset(R,w)), then we prove

w =g w' by induction on the depth of the inference tree. ad

Expressing Control Mechanisms of Membranes by Rewriting Strategies 167

3.4 Strategic Semantics of Maximal Parallel Rewriting with
Inhibitors

An evolution rule with inhibitor is a rewriting rule of the form £ : © — v|-,. Such
a rule can be applied in an evolution step w = w’ only if the inhibitor p is not
present in w.

We proceed in a similar way as for promoters. Let A be the set of all the objects
and iset(A,w) be the complement w.r.t. A of the set of inhibitors occurring in
w. The encoding uses iset(A, w) instead of pset(R,w), and rules with inhibitors
instead of rules with promoters. The set R consists of the following rules:

— compute : w — (w, iset(A, w)),

— forget : w'(w, s) — w'w, together with

— arule / : w (wu,s) — w'v(w,s) for each rule £ : u — v without inhibitor,
and

— arule £ : w'(wu, ps) — w'v(w, ps) for each rule £ : u — v|_, with inhibitor,

where w’, w range over multisets, and s ranges over the sets of inhibitors.

Definition 5. We suppose that R = {{; : u; — v; | i =1,...,n}, and let R be
computed as above. Then the strategy inhib(R) is

inhib(R) i compute; repeat(/; 4 - - - + £,,); forget

Theorem 4. Given a set R of evolution rules with inhibitors, then

. inhib(R
w=Spw zﬁw#w’.

3.5 Strategic Semantics of Maximal Parallel Rewriting with
Promoters and Inhibitors

When we have rules involving both promoters and inhibitors, we encode a mul-
tiset by a triple (w, pset(R,w),iset(A,w)) in order to have information about

A

both promoters and inhibitors. The set R consists of the following rules:

compute : w — (w, pset(R, w),iset(A, w)),
forget : w'(w, s,s’) — w'w, together with

a rule £ : w'(wu,s,s') — wv(w,s,s') for each rule £ : u — v in R without
promoter or inhibitor,

arule £ : w'(wu, ps, s’) — w'v(w, ps, s’) for each rule £ : v — v|, in R with
promoter, and

a rule £ : w'(wu, s, ps’) — w'v(w, s, ps’) for each rule £: u — v|-p in R with
inhibitor.

This encoding is general, and it can be used even one or both sets of promoters
and inhibitors are empty.

168 O. Andrei, G. Ciobanu, and D. Lucanu

Definition 6. We suppose that R = {{; : u; — v; | i =1,...,n}, and let R be
computed as above. Then the strategy prominhib(R) is

~

prominhib(R) & compute; repeat(ly + - -- + £,); forget

Theorem 5. Given a set R of evolution rules involving eventually promoters

and inhibitors, then

. prominhib(R)
w=pw iff w —m w'.

4 Conclusion

The main contribution of the paper is given by the use of strategies in defin-
ing a term rewriting semantics of the membrane systems. Comparing with the
operational semantics presented in [2], here we use strategies to describe the
control mechanisms in membranes. We give a strategic semantics for maximal
parallel rewriting, as well as for maximal parallel rewriting with priorities be-
tween rules. However we find that a more powerful mechanism than strategies is
needed to provide semantics for maximal rewriting with promoters or inhibitors.
A useful encoding of the rules can solve this problem, and finally we can provide
the semantics for maximal rewriting of membrane systems involving promoters
and inhibitors. In this way, term rewriting semantics distinguishes between pri-
orities and promoters/inhibitors, namely it is easier to describe priorities than
promoters/inhibitors.

We adapt the strategy language presented in [10], taking into considera-
tion that:

— only a part of the strategy operators defined in [10] is used for describing
the control mechanisms in membranes;

— since the membranes work over multisets of objects, the strategy congruence
operators are extended to handle the associativity and commutativity.

In the paper we consider elementary membranes. The approach can be ex-
tended to more complex membrane systems. Such a membrane system is a hier-
archical structure of membranes which could be specified as follows:

system I/

objects A

membrane M
contents wi
evolution rules R
control ()

end

membrane Ms
contents wo
evolution rules R
control (s

end

Expressing Control Mechanisms of Membranes by Rewriting Strategies 169

structure [Mi[M-..]
end

Usually a global clock is assumed [9]. At each tick of this clock, the current
configuration of the system is transformed into another one in three phases:
evolution - where all the membranes evolve according to their rules and control
mechanisms, communication - where objects are exchanged between adjacent
membranes, and membrane dissolving. The configurations of a membrane sys-
tem IT can be described as terms in an appropriate algebraic specification [2].
Encoding all the membranes as rewriting systems with strategies, we can use
traversal operators like bottomup or topdown [10,7] over configurations in or-
der to extend the evolution of each membrane to the global evolution phase of
a transition step. We may proceed in the same way for the other two phases.
Consequently, a transition step is described by the sequential composition of the
three corresponding strategies.

Acknowledgment. We are grateful to Alberto Verdejo for his useful remarks
regarding our implementation in Maude strategy language.

References

1. O. Andrei, G. Ciobanu, D. Lucanu. Executable Specifications of the P Systems. In
Membrane Computing. WMCS5, Lecture Notes in Computer Science 3365, Springer,
127-146, 2005.

2. O. Andrei, G. Ciobanu, D. Lucanu. A Structural Operational Semantics of the P
Systems, In Membrane Computing. WMC6, Lecture Notes in Computer Science
3850, Springer, 32—49, 2006.

3. O. Andrei, G. Ciobanu, D. Lucanu. Strategies and Tactics in Operational Seman-
tics, “A.1.Cuza” University, Faculty of Computer Science Tech. Rep. TR06-01,
2006.

4. C. Bonchis, G. Ciobanu, C. Izbaga. Encodings and Arithmetic Operations in Mem-
brane Computing. In Theory and Applications of Models of Computation, Lecture
Notes in Computer Science 3959, Springer, 618-627, 2006.

5. P. Borovansky, C. Kirchner, H. Kirchner, C. Ringeissen. Rewriting with Strate-
gies in ELAN: A Functional Semantics. International Journal of Foundations of
Computer Science, 12(1), 69-95, 2001.

6. M. Clavel, F. Durén, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, J.F. Quesada.
Maude: Specification and Programming in Rewriting Logic. Theoretical Computer
Science, 285(2), 187-243, 2002.

7. N. Mart-Oliet, J. Meseguer, A. Verdejo. Towards a Strategy Language for Maude.
Electr. Notes Theor. Comput. Sci., 117, 417-441, 2005

8. J. Meseguer. Conditional Rewriting Logic as Unified Model of Concurrency. The-
oretical Computer Science, 96, 73—155, 1992.

9. Gh. Paun. Membrane Computing. An Introduction. Springer, 2002.

10. E. Visser. A Survey of Strategies in Rule-Based Program Transformation Systems.
Journal of Symbolic Computation, 40, 831-873, 2005.

11. E. Visser, Z.-A. Benaissa, A. Tolmach. Building Program Optimizers with Rewrit-
ing Strategies. ACM SIGPLAN Notices, 34, 13—26, 1999.

Tissue P Systems with Communication Modes

Francesco Bernardini'* and Rudolf Freund?

! Leiden Institute of Advanced Computer Science
Leiden University
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
bernardi@liacs.nl
2 Faculty of Informatics
Vienna University of Technology
Favoritenstr. 9, A-1040 Wien, Austria
rudi@emcc.at

Abstract. The paper introduces communication modes in tissue P sys-
tems that are based on the applicability of the rules to the objects present
inside the cells. This notion of a communication mode is inspired by
the concept of a derivation mode used in the area of grammar systems.
Three different communication modes are identified depending on both
the way the objects are moved from one cell to another one, altogether as
a multiset or independently from each other, and on the moment when
communication can take place, immediately after a terminal object is
produced inside a cell, immediately after a cell has reached a terminal
configuration or only when the system as a whole has reached a final con-
figuration. The computational power of tissue P systems with different
communication modes is compared with the power of the basic model of
P systems and some classes of L systems.

1 Introduction

P systems represent a class of distributed and parallel computing devices of a
biological type that was introduced in [12]. Several variants of this model have
been investigated and the literature on the subject is still rapidly growing. The
main results in this area show that P systems are a very powerful and efficient
computational model (e.g., see [12], [13] and [17] for a comprehensive bibliogra-
phy). The main ingredient of a P system is the membrane structure defined as
a hierarchical arrangement of different membranes, embedded in a unique skin
membrane, that identify several distinct regions inside the system. Each region
gets assigned a finite multiset of objects and a finite set of rules for modifying
the objects or moving them from one place to another one. The structure of a
P system is usually represented as a tree. Thus, tissue P systems were proposed
as a variant of membrane systems where the structure of the system is defined
as an arbitrary graph [13], and which are somehow inspired by cell behaviour in

* Research supported by NWO, the Netherlands Organisation for Scientific Research,
project 635.100.006 “VIEWS”.

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 170-182, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Tissue P Systems with Communication Modes 171

tissues of multi-cellular organisms (e.g., see [1]). Specifically, nodes in the graph
represent cells that are able to communicate objects along the edges of the graph.
The few variants of tissue P systems considered in the literature essentially differ
in the mechanisms used to communicate objects from one cell to another one.
For instance, particular sets of communication rules can be assigned to the edges
in the graph defining the structure of the system in order to model the existence
of communication channels among the cells in the systems [11], [9]; alternatively,
there are evolution-communication tissue P systems, so to adopt the terminol-
ogy introduced in [4], where the objects produced by particular transformations
occurring inside the cells are non-deterministically propagated from one place to
another one [10], [3].

In this paper, we consider a model for tissue P systems where each cell gets
assigned a finite set of transformation rules (i.e., multiset rewriting rules) and,
after each application of these rules, all the objects produced inside the cell
that can be communicated are moved out from the cell and distributed to the
neighbouring cells according to a specific communication mode. Specifically we
identify three communication modes: terminal at the level of objects, terminal at
the level of cells, and terminal at the level of the system. Terminal at the level
of objects means that every object that cannot undergo any transformation
inside a cell is communicated independently from the others immediately after
it has been produced inside that cell. Terminal at the level of cells means that
communication in a cell can only take place when no more transformation rules
can be used inside the cell; the objects associated with that cell are then moved
altogether at the same time and they are bound to reach the same target cell.
Terminal at the level of the system means that no communication is permitted
in the system till a configuration is reached where no more rules can be used
inside any cell of the system; cells can then exchange their respective multisets of
objects with the constraint that objects previously associated with the same cell
must be moved altogether into the same target cell. In all these communication
modes, by target cell or neighbouring cell, we mean a cell that is adjacent in the
underlying graph to the cell where objects are moved from.

This notion of communication modes is inspired by the concept of deriva-
tion modes used in the area of grammar systems [5]. Grammar systems are
systems formed by a number of grammar components that cooperate according
to a given protocol in order to rewrite a common string. In the basic model
of grammar systems, called CD grammar systems, a component at a time is
non-deterministically chosen to rewrite the unique string in the system and,
once activated, this component performs as many derivation steps as necessary
according to the derivation mode chosen — = k, < k, > k derivation steps,
an arbitrary number of derivation steps or as many derivation steps as possi-
ble (t-mode). The common string is then released so that another component
can become active etc. till a string accepted by the system is produced. Here,
in some sense, we are reversing the perspective by considering the objects as
the active elements in the system that are moved from one place to another one;

172 F. Bernardini and R. Freund

specifically, once some objects have entered a cell, they have to remain inside
that cell until a specific condition is met such that a communication can take
place and the objects can leave the cell. Moreover, with respect to the basic
notion of cooperating/distributed grammar systems, different cells can be active
at the same time by operating in parallel on different multisets of objects; as well
as this, the use of multisets allows every object to evolve independently from the
others and to be arbitrarily distributed to the cells in the system. We also note
that similar issues concerning relationships between P systems and grammar
systems were investigated in [2], [6] [8], [14].

The present paper is organised as it follows. Section 2 briefly recalls the no-
tations commonly used in membrane computing and the few notions of formal
language theory that will be used in the rest of the paper; in particular, we re-
port the definition of extended tabled Lindenmayer systems including the case of
systems with random contexts. Section 3 is dedicated to the definition of tissue
P systems with a communication mode in the three cases mentioned above. The
computational power of these classes of tissue P systems is then investigated in
Section 4 in comparison with the power of the basic model of P systems and
the power of extended tabled Lindenmayer systems. Some further remarks and
directions for future research are discussed in the last section of the paper.

2 Preliminaries

We here recall some basic notions concerning the notations commonly used in
membrane computing and the few notions of formal language theory we need in
the rest of the paper. We refer to [13], [16] for further details.

An alphabet is a finite non-empty set of abstract symbols. Given an alpha-
bet V, by V* we denote the set of all possible strings over V', including the
empty string A. The length of a string € V* is denoted by |z| and, for each
a €V, |z|, denotes the number of occurrences of the symbol a in z. A multiset
over V is a mapping M : V — N such that M (a) defines the multiplicity of
a in the multiset M (N denotes the set of non-negative integers). Such a mul-
tiset can be represented by a string aiw(al) aéw(”) . ..af\l/[(a") € V* and by all
its permutations, with a; € V, M(a;) # 0, 1 < j < n. In other words, we
can say that each string € V* identifies a finite multiset over V defined by
M, = {(a,|z|s)|a € V}. Given two multisets = and y, with z,y € V*, we
say that the multiset = includes the multiset y, or the multiset y is included in
the multiset x, and we write x J gy, or y C z, if and only if |z|, > |y|a, for
every a € V. In P systems, in order to manipulate multisets, we need the notion
of multiset rewriting rules as counterpart of the well-known operation of string
rewriting. Formally, a multiset rewriting rule is a pair (z,y) — we also write
x — y — with x,y being two finite multisets over V. A finite multiset w over
V' can be rewritten by a rule z — y if and only if w J z, and we say that the
multiset w can evolve by means of the rule x — y thereby replacing the multiset
x by the multiset y in w, i.e. the result of the application of the rule x — y to the

Tissue P Systems with Communication Modes 173

multiset z is the multiset w’ such that, for every a € V, |w'|q = |w|a —|2Z|a +Y]a-
Moreover, a multiset rewriting rule x — y is said to be non-cooperative if |z| = 1
whereas it is said to be cooperative if |z| > 1.

An ETOL system is a construct G = (V,T,w, Py,...,Py,), m > 1, where V
is an alphabet, T C V is the terminal alphabet, w € V* is the aziom, and P;,
1 <i < m, are finite sets of rules (tables) of non-cooperative rules over V' of the
form a — z. In a derivation step, all the symbols present in the current sentential
form are rewritten using one table. The language generated by G, denoted by
L(G), consists of all the strings over T which can be generated in this way by
starting from w. An ETOL system with only one table is called an EOL system. By
EOL and ETOL we denote the families of languages generated by EOL systems
and ETOL systems, respectively. An ETOL system with random contexts [7] is
an ETOL system where each table P is associated with a corresponding finite
subset () of V' and the table P is applicable to a a given string if and only if
this string contains each of the letters in (). The family of languages generated
by ETOL systems with random contexts is denoted by ETO0L(rc). It is known
from [16] that CF C EOL C ET0L C CS, with CF being the family of context-
free languages and C'S being the family of context-sensitive languages; it is also
proved in [7] that ETOL C ETOL(rc). However, as the paper deals with P
systems with symbol objects, we will consider ETOL systems as devices that
generate sets of non-negative integers; to this aim, given an ETOL system G,
we define the set of non-negative integers generated by G as the length set
N(G) = {|z| |z € L(G) }. The corresponding family of sets of non-negative
integers then are denoted by NCF, NEOL, NETOL, NET0L(rc), and NCS,
respectively. Finally, we recall the fact that, according to Theorem 1.3 in [15],
for each language L € ETOL there is an ETOL system that generates L, contains
only two tables, i.e., G = (V,T,w, P, P»), and moreover, after having used P,
we can use any of P; and P», but, after having used P, we always have to
use P;.

3 Tissue P Systems with a Communication Mode

Now we formally introduce the notion of tissue P systems with a communication
mode by giving the following definition.

Definition 1. A tissue P system with a communication mode is a construct
T= (‘/’7701a02a"'70n700’0)

where

1. V is a finite alphabet of symbols called objects;

2.yv=({1,2,...nHLE), with E C {{i,j}|1 <i,5 <n, i#j}, is a finite
connected undirected graph;

3. C; = (w;, R;), for each 1 <1i <mn, such that
(a) w; € V* is a finite multiset of objects;

174 F. Bernardini and R. Freund

(b) R; is a finite set of multiset rewriting rules of the form a — y fora € V
and y € V*; these rules are called the transformation rules associated
with cell i;

4. co is the output cell;
5. o € {tObj,tCell,tSys} specifies the communication mode adopted by the
system.

A tissue P system with a communication mode, which, for the sake of simplicity,
in the following will be just called a tissue P system, is defined as a collection of
n > 1 cells that are associated in a one-to-one manner to the nodes of a finite
undirected graph denoted by v that are labeled by values in {1,2,...,n}. The
edges of the graph « define the existing links between the cells of the system, and
they are represented as unordered pairs of the form {, 5} with 1 <4,j <n and
i # j. Each cell C;, with ¢ € {1,2,...,n}, represents a basic functional unit of a
tissue P system and it is characterized by a finite multiset of objects w;, which
defines its initial contents, and by a finite set of multiset rewriting rules R;, called
transformation rules, which allow a cell to modify its contents by consuming some
objects in order to produce some new ones. Throughout the rest of the paper,
each cell C;, with i € {1,2,...,n}, will be referred to as cell i. Moreover, for
each cell 4, we define the set of its neighbouring cells N; = {j | {i,7} € E} (ie.,
the set of cells that are directly linked to cell ¢ according to the graph «) and its
terminal alphabet T; = {a| there exists no rule a — v € R;, for any v € V*}
(i.e., the set of objects that cannot evolve by means of any rule in R;).
Communication in a tissue P system 7 is driven by the communication mode
o € {tObj,tCell,tSys}, which specifies how objects can be moved from one
cell to another one; specifically, for each cell 7, with 1 < ¢ < n, communication
involves only the objects in T; and it can be done in the following ways:

— tObj (terminal at the level of objects): every time an object a € T is pro-
duced inside cell 4, it is immediately moved from cell i to a cell j € N;
non-deterministically chosen; the objects associated with cell ¢co (the output
one), i.e., the objects from T, can never be moved out from cell cop.

— tCell (terminal at the level of cells): communication of objects from cell 4 to
another one takes place only when all the objects contained in cell ¢ are in T;
(i.e., when the objects inside cell ¢ cannot evolve anymore by means of any
rule in R;); the objects in T; contained in cell ¢ are then moved altogether
at the same time from cell 7 to the same cell ;7 € N; non-deterministically
chosen; the objects from T, can never be moved out from cell co.

— tSys (terminal at the level of the system): in a way similar to the communi-
cation mode tCell, the objects in T; contained in cell ¢ are moved altogether
at the same time from cell 7 to the same cell ;7 € N; non-deterministically
chosen; however, before any communication can take place, the system must
have reached a configuration where no more transformation rules can be
used inside any cell of the system; the objects from T, can never be moved
out from cell co.

Tissue P Systems with Communication Modes 175

Thus, a computation in a tissue P system 7 consists of a sequence of steps
where, after each application of the transformation rules, all the communications
permitted by the communication mode ¢ take place and the new distribution
of objects inside the system becomes effective when starting the next step of
computation. As is quite usual in P systems, transformation rules are applied in
a non-deterministic maximally parallel manner. A computation in 7 is said to be
successful if it reaches a configuration where no more transformation rules can
be used inside any cell of the system and no further communications between
the cells can take place. The result of a successful computation is given by the
number of objects contained in the output cell ¢o in the final configuration.
The set of non-negative integers generated by all the successful computations
in 7 is denoted by N(7). Notice that, whatever the communication mode is, a
successful computation always produces a final configuration where all the cells
but the output one are empty, as v = ({1,2,..,n}, E) is a connected graph, i.e.,
for each pair (i,7), 1 <i,j <n and i # j, it is always possible to reach node j
from node 4 through a path in the graph ~.

4 The Computational Power of Tissue P Systems with a
Communication Mode

In this section we present some results concerning the generative power of tis-
sue P systems when different communication modes are used. To this aim, we
introduce the families of sets of non-negative integers of the form NOT P, (o),
with n > 1 and o € {tObj, tCell, tSys}; they identify the families of sets of non-
negative integers generated by tissue P systems with at most n cells that adopt
the communication mode o. Moreover, when the number of cells is not specified
but it can assume any value, the corresponding family of sets of non-negative
integers is denoted by NOT P, (c), with o as above.

The first result shows that, in the case tObj, the hierarchy on the number
of membranes collapses at level 1, and this communication mode in fact does
not increase the power of (tissue) P systems with respect to the basic model of
membrane systems.

Theorem 1. NOTP,(tObj) = NOTP,(tObj) = NCF, forn > 1.

Proof. Let T = (V,~, (w1, R1), (we, R2), ..., (wn, Ry),co,tObj) be a tissue P
system as specified in Definition 1, with n > 1. Foreach 1 <i <mn and a € V,
we define the set of possible destinations for the object a that can be reached
from cell ¢ as the set D;(a) such that

— Di(a) ={aj|je N}, ifco g N;orad¢T.,, and
— Di(a) ={aj|jeN;,j#cotU{a},if co € N; and a € T,

176 F. Bernardini and R. Freund

Then we construct a tissue P systems 7’ with one cell that is able to simulate
T:
T =(V',({1},0), (v', R'), 1,t0bj)

where V! = T,, U{a;la € V,1 <i < n}, w' = hy(wy)ha(ws)...h,(w,), for
hi(a) = a;, if i #co or a & Tey, hi(a) =a,if i =co and a € T, 1 <1 < n,
and R’ is a finite set of rules that contains

— for each rule @ — biby...bx € R;, with k > 1, b1,ba,... by € V, i # co, a
finite set of rules R.(a — b1ba...by) such that

b;EDl(b]) lfb] ETZ,].S_]Sk},

— for each rule a — v € R, with v € V*, a rule a — he, (v);
— for each a € T;, with i # {co}, a set of rules

Ri(a) ={a; — b|b€ D;(a)};
— for each rule a — A € R;, with 1 <14 <n, arule a; — .

The simulation of the tissue P system 7 by means of the tissue P system
7' is done in the following way: each rule a — biby...by € R;, with k > 1,
b1,ba,....,b, € V, 1 < i < n, i # co, is mapped to a set of rules R;(a —
b1ba .. .by); these rules simulate the application of the rule a — biby...b, €
R; to the objects contained in cell ¢ and, at the same time, they simulate the
communication of the objects in T; that appear on the right-hand side of the
rule. This is done by replacing, on the right-hand side of the rule, each object
b & T; by an object b; (i.e., the object b remains inside cell 7) and each object
b € T; by an object ¢ € D;(a) (i.e., the object b is moved from cell ¢ to one of the
neighbouring cells). Notice that we have to consider all the possible combinations
for the destinations of the objects because communication in the tissue P system
7T is non-deterministic and, as the communication tObj is adopted, each object
is moved independently from the others. In other words, the non-determinism
at the level of communication observed in the tissue P system 7 is reflected by
the non-determinism at the level of the transformation rules associated with the
unique cell of the tissue P system 7. The simulation of the application of the
rules inside the output cell co is considered apart because the objects can never
be moved out from that cell. Specifically, for each rule ¢ — v € R, there exists
a corresponding rule a — h., (v) in 7’ such that all the objects get assigned the
label co. Finally, each object a € T; that enters a cell ¢ is immediately moved
out from that cell by using a rule a; — b, with b € D;(a).

Therefore we infer that the tissue P system 7’ correctly simulates the ap-
plications of the rules in 7 and, in the case of a successful computation in
7', the multiset of objects obtained inside the unique cell in 7’ is exactly the
same as the multiset produced inside the output cell co by the corresponding

Tissue P Systems with Communication Modes 177

successful computation in 7. Therefore N(7') = N(7T), and thus we have proved
NOTP.(tObj) = NOT P, (tObj), for n > 1.

Then, in order to show that NOTP;(tObj) = NCF, we can use a similar
result as proved in [13] for the basic model of P systems; in [13], a characterisation
of NCF is provided that is based on P systems with one membrane using only
non-cooperative rules. Thus, such a result can be immediately transferred to
tissue P systems with one cell as it is obvious that the two models are equivalent
in the case of systems with only one cell. O

The communication mode tSys can instead be proved to be more powerful than
the communication mode tObj:

Theorem 2. NOTP,(tSys) = NOTP,(tSys) = NETOL, for n > 4.

Proof. (i) NETOL C NOTP,(tSys). As pointed out in Section 2, for every
language L € ETOL there exists an ETOL system G with only two tables that
generates L, i.e., G = (V,T,w, P;, P5). Moreover, after having used table P;, we
can use both P; and P», but, after having used table P, we always have to use
table P;. The table used in the first step of a computation is P;. In order to
simulate G, we construct the following tissue P system

TL = (Vlv Y (w/7 Rl)v (>‘7 R2)7 ()‘v R3)7 (>‘7 R4)7 47 tSys)
where

V ={a,d’,a"|a e V}U{#},

3= ({1,2,3,4}, {1, 2}, {1, 3}, {1, 4}, {2,4}}),

R1:{a’—>b’1'b’2'...b§6’\a—>b1b2...bkEPl,kzl}
U{d - Xa—XeP},

RQZ{aH—>b/1b/2... §C|a—>b1b2...bk€P2,k21}
U{d = Ala—)Xe P},

R3={d"—d|aeV},

Ry={d —a,d" —alaeT}

U{d - #,d" > #|lac(V-T)}U{# — #}.

The simulation of the ETOL system G by means of the tissue P system 7 is done
in the following way.

Cell 1 is used to simulate table P;: the application of rules in P, produces a
multiset v’ € {a” |a € V}* inside cell 1; after that, no more rules can be used
in the system and " is moved from cell 1 either to cell 2 or to cell 3 or to cell
4. If the multiset u” reaches cell 2, then we can pass to simulate the application
of P,. If the multiset u” instead reaches cell 3, then we return to simulate Pp;
this is done by replacing each object a” by the object a’ and moving all these
objects back to cell 1. In cell 2, the simulation of table P5 is done in a similar
way by applying corresponding transformation rules that produce a multiset

178 F. Bernardini and R. Freund

u’ € {d'|a € V}*; after that, no more rules can be used in the system and '
is moved from cell 2 either to cell 1, to simulate another application of table
Py, or to cell 4. At any moment, if a multiset v’ € {a’'|a € V}* or a multiset
u” € {a"|a € V}* reaches cell 4, then the rules in R4 are used to check whether
this multiset contains only terminal symbols or not. Specifically, every object a’
or a’, with a € T, is replaced by the corresponding terminal object a, whereas
every object a’ or @, with a € (V —T), is replaced by the object #. Thus, if the
multiset v’ or the multiset u” contains some non-terminal symbol, an infinite
computation is the consequence; otherwise, the computation halts.

Therefore, the tissue P system 7, correctly simulates the ETOL system G and
we conclude N(G) = N(7z).

(ii) NOTP,(tSys) € NETOL, for n > 1. Consider a tissue P system 7 as
specified in Definition 1 such that

T= (‘/7 Ys (w17R1)7 (w27R2)a ceey (wnaRn)7COatSys)a

with v = ({1,2,...,n}, E), n > L.Then, let v/ = ({1,2,...,n}, E’) be a directed
graph such that, for all {i,j} € E, (i,j) € E and (j, i) € E, and nothing else is
in E’'. We construct the following ETOL system that simulates the behaviour of

the tissue P system 7:
G=(V"V,w,P)

where V! = {a;|a € V,;1 <i < n} UV U{#}, w = hi(wi)ha(wz)...hn(ws,),
with h;(a) = a;, 1 <i<n,a€V,and P is a finite set of tables that contains
— a table
Pr={a;—hi(v)J]a wvER,aeViveV"1<i<n}
U{a; —»alaeT,1<i<n}
U{a—alaeV}U{# — #}
this table is used to simulate the application of transformation rules for the
objects currently associated with the cells in the system; these rules must be
applied as many times as possible until a configuration is reached where no

more transformation rules can be used in the system;
— a table

P{()}:{aih—>ajh\a€Tih,1§h§n—1}
U{ai = #lad T 1 <i<n}U{# — #}
U{aeo, = aep |la €Tey }
U{a—alaeV},

for each {(ilajl)ﬂ(i27j2)7'~'7(in717jn71)} c Ela with

{iryin, . vin 1} ={i[1<i<n,i#col

these tables are used to simulate the communication between the cells in
the system; specifically, for each h, 1 < h < n — 1, we choose a target cell

i1,51),(42,52) s (fn—1,9n—1

Tissue P Systems with Communication Modes 179

jn € N;, (the objects in T, can never be moved out from cell cp), and the
communication of objects from cell 5 to cell j, then is performed by just
changing the label of the objects from 5 to jp; moreover, rules of the form
a; — #, with 1 <4 <mn, a; € T}, are considered in order to make sure that
these tables are used only at the right moment when the objects inside the
cells cannot evolve anymore by means of any rule; also notice that, since,
for each edge {i,j} € E, the set E’ contains both (4,7) and (j,7), we have
all the tables necessary to simulate communication between two cells in any
direction;
— a table

Pr={a;—=#lacV,1<i<n,i#co}
U{aeo = #lagTep}
U{ae —ala€Te,}
U{a—alaeV}U{#— #}

this table is used to finish a successful computation in 7; in fact, as pointed
out in Section 3, a computation in a tissue P system can be successful if and
only if the system reaches a configuration where all the cells except for the
output one are empty and the output cell contains only objects that cannot
evolve anymore by means of any rule associated with that cell.

Therefore, we conclude that the L system G correctly simulates the tissue P
system 7, and we have N(G) = N(7). O

Finally, we pass to consider the communication mode tCell. As an immediate
consequence of Theorem 2, we obtain the following result.

Corollary 1. NETOL C NOTP,(tCell), for n > 4.

It is in fact easy to see that the behaviour of the tissue P system 77, as defined
in the proof of Theorem 2, would not be changed if the communication mode
tCell were adopted instead of the communication mode tSys, because only one
cell at a time is active in 77, and, once the application of its own rules has been
finished, the resulting multiset is passed to another cell, which then becomes the
new active one, etc. On the other hand, for the communication mode tCell, we
are not able to prove the opposite inclusion or to prove that the hierarchy on the
number of membrane collapses at a particular level. Nevertheless, we can provide
an upper bound for the generative capacity of this class of tissue P systems by
considering ETOL systems with random contexts:

Lemma 1. NOTP,(tCell) C NETOL(rc).

Proof. We adopt a construction very similar to the one used in point (ii) of the
proof of Theorem 2. Therefore, we do not report all the details of the proof and
leave the task of a complete formalisation to the reader.

180 F. Bernardini and R. Freund

Consider a tissue P system 7 as specified in Definition 1 such that
T= (‘/7 Ys (w17 R1)7 (w27 R2)a ceey (wn, Rn)7COatSZ/5)’

with v = ({1,2,...,n}, E), n > 1.Then, let v/ = ({1,2,...,n}, E') be a directed
graph such that, for all {i,j} € E, (i,j) € E and (j,¢) € E, and nothing else
is in . We construct an ETOL system with random contexts G that simulates
the tissue P system 7 as follows: first of all, we define the table

P ={a;, = hi(v)]a—veR,1<i<n}
U{a —a|laeT;,1<i<n}
U{a, > #laeV,1<i<n}
Ufa—alaeViU{# —#},
Q=10

with hl(a) = a}, for each a € V, 1 < i < n. This table is used to simulate
a single application of transformation rules to the objects currently contained
inside the cells; for each 1 < i < n, the objects currently assigned to cell i are
of the form a;, for some a € V, and, after the application of the transformation
rules, all these objects turn to be of the form a}. This is necessary because, after
each application of the transformation rules, we have to check for the possibility
that some communication can take place inside some cells that have reached
a configuration where no more rules can be used. To this aim, we consider all
the possible partitions I = Iy U o, with [; NI =0, of the set I ={i|1 <3 <
n,i # co }, i.e., I identifies the set of cells where communication can take place,
whereas I identifies the set of cells where no communication is permitted. For
each partition of that kind, we construct all tables of the form

P{(il7j1)7(i27j2)7--~7(ik7jk)} = {a{ih — Qjp lac T, 1<h<k}
U{a, = #lag T, 1<h<k}
U{a), —aplacV,1<t<m}
U{a;—#laeV,1<i<n}
U{alco _’aco‘GGV}
U{a—alaeV}IU{#—#1},
Q:{bplabp27~-~7bpm}7

such that {(il,jl), (ig,jz), ey ('Lk,]k)} - El, Il = {il,ig, RPN ,ik}, and bpl g TPl’
bpy, & Tpgsees bp,, & Ty, with In = {p1,D2,...,pm}. These tables are neces-
sary to simulate the communication of objects between the cells in the tissue
P system 7. Given I; and I, the random context makes sure that one of
these table is used if and only if each cell p, with p € I5, contains at least
one object b, ¢ T, (i.e., no communication is permitted for any cell in I5). On
the other hand, communication of objects from a cell ¢, with ¢ € I, can take
place if and only if cell i does not contain any object a ¢ Ty; if this is not the

Tissue P Systems with Communication Modes 181

case, then the trap object # is introduced. Finally, after the application of one
of these communication tables, we can either return to apply table P; or decide
to finish the computation by applying the following final table:

Pr={a,—>#laeV,1<i<n,i#co}
U{a = #laeV,1<i<n}
U{ac, = #lag T}

U{a,, —alaeT,,}
Ufa—alaeVIU{# —#}
Q=0

This table is used to finish a successful computation in T’; in fact, as pointed out
in Section 3, a computation in a tissue P system can be successful if and only if
the system reaches a configuration where all the cells except for the output one
are empty and the output cell contains only objects that cannot evolve anymore
by means of any rule associated with that cell.

Therefore, we conclude that the L system G correctly simulates the tissue P
system 7, and we have N(G) = N(T). O

5 Conclusions

Membrane computing and grammar systems are two active areas of theoreti-
cal computer science, with different starting points, but with several similarities
(both areas deal with distributed computing devices, where such notions as par-
allelism, cooperation, decentralisation are crucial). P systems were introduced
with a clear biological motivation by being mainly inspired by the structure and
functioning of living cells [13]. The initial motivation of grammar systems in-
stead was related to artificial intelligence issues, and only later on features from
other areas of parallel and distributed computing were incorporated [5]. The
present work attempts to bridge the areas of P systems and grammar systems
by introducing a notion of a communication mode for tissue P systems that is
inspired by the concept of a derivation mode used in grammar systems. The
notion of a communication mode is mainly related to the t-mode of derivation:
rewrite a string as many times as possible till a terminal string is produced [5].
In particular, the result proved in Theorem 2 is in a sense coherent with the
similar characterisation of ET0OL provided in [5] for grammar systems with the
t-mode of derivation. Future research in this respect may be dedicated to better
characterize the concepts of communication mode, active component, terminal
derivation in the context of P systems. Other investigations may be dedicated to
study P systems with string objects in relationship to the two standard models of
grammar systems: CD grammar systems and PC grammar systems. Approaches
in this direction can already be found in [2], [6].

182 F. Bernardini and R. Freund
References
1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: The Molecular

10.

11.

12.

13.
14.

15.

16.

17.

Biology of the Cell. Fourth Edition. Garland Publ. Inc. London (2002)

. Bernardini, F., Gheorghe, M.: Population P Systems and Grammar Systems. In:

E. Csuhaj-Varjd, Gy. Vaszil (eds.): Proceedings of Grammar Systems Week 2004,
Budapest, Hungary, July 5-9, 2004. MTA SZTAKI Budapest (2004) 66-77
Bernardini, F., Gheorghe, M.: Cell Communication in Tissue P Systems: Univer-
sality Results. Soft Computing 9, 9 (2005) 640-649

Cavaliere, M.: Evolution-Communication P Systems. In: Paun, Gh., Rozenberg, G.,
Salomaa, A. and Zandron, C. (eds.): Membrane Computing. International Work-
shop, WMC-CdeA 02, Curtea de Arges, Romania, August 19-23, 2002. Revised
Papers. Lecture Notes in Computer Science 2597 Springer (2003) 134-145
Csuhaj-Varju, E., Dassow, J., Kelemen, J., Pdun, Gh.: Grammar Systems. A Gram-
matical Approach to Distribution and Cooperation. Gordon and Breach London
(1994)

Csuhaj-Varju, E., Paun, Gh., Vaszil, Gy.: Grammar Systems versus Membrane
Computing: The Case of CD Grammar Systems. To appear in Fundamenta Infor-
maticae (2006)

Dassow, J., Paun, Gh.: Regulated Rewriting in Formal Language Theory. Springer
Berlin (1989)

Freund, R., Oswald, M.: Modelling Grammar Systems by Tissue P Systems Work-
ing in the Sequential Mode. In: E. Csuhaj-Varji, Gy. Vaszil (eds.): Proceedings of
Grammar Systems Week 2004, Budapest, Hungary, July 5-9, 2004. MTA SZTAKI
Budapest (2004) 179-199

Freund, R., Paun, Gh., Pérez-Jiménez, M.J.: Tissue-like P systems with channel
states. Theoretical Computer Science 330 (2005) 101-116

Martin-Vide, C., Paun, Gh., Pazos, J., Rodriguez-Patén, A.: Tissue P Systems.
Theoretical Computer Science 296 (2003) 295-326

Paun, A., Paun, Gh., Rozenberg, G.: Computing by Communication in Networks of
Membranes. International Journal of Foundations of Computer Science 13 (2002)
779-798

Paun, Gh.: Computing with Membranes. Journal of Computer and System Sciences
61 (2000) 108-143

Paun, Gh.: Membrane Computing. An Introduction. Springer (2002)

Paun, Gh.: Grammar Systems vs. Membrane Computing: A Preliminary Ap-
proach.In: E. Csuhaj-Varji, Gy. Vaszil (eds.): Proceedings of Grammar Systems
Week 2004, Budapest, Hungary, July 5-9, 2004. MTA SZTAKI Budapest (2004)
255-275

Rozenberg, G., Salomaa, A.: The Mathematical Theory of L. Systems. Academic
Press New York (1980)

Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. 3 volumes.
Springer (1997)

The P Systems Web Page. http://psystems.disco.unimib.it

Towards a Hybrid Metabolic Algorithm

Luca Bianco and Federico Fontana

University of Verona
Department of Computer Science
15 strada Le Grazie — 37134 Verona, Italy
bianco@sci.univr.it, federico.fontana@univr.it

Abstract. During recent years stochastic algorithms have deserved
much attention from the computational biology research communities. In
this paper we derive a hybrid version of the formerly known Metabolic
Algorithm that is enriched with stochastic features, whose impact on
the dynamics of the system is especially prominent when the amount
of metabolite becomes smaller. This hybrid procedure represents a first
attempt to let the Metabolic Algorithm deal with low concentrations of
substances according to a non-deterministic policy.

1 Introduction

The simulation of a metabolic process relies on several, sometimes well-establi-
shed methods and algorithms that either compute its evolution deterministically,
as it happens with methods discretizing a Reaction Rate Equation, or stochas-
tically, as it happens with algorithms solving or approximating the Chemical
Master Equation [6,19]. The latter algorithms are quite accurate but computa-
tionally expensive, given the individual handling they must do of each molecule,
and provided that only several repeated realisations of the same simulation in
principle provide sufficient information about the expected behavior of a system.
For this reason, approximated versions of these algorithms have been proposed
in order to diminish the computational burden of the stochastic approach [4].

Less is known about the possibility to gain efficiency, without loosing too
much in accuracy, by using hybrid algorithms capable of mixing the determinis-
tic and the stochastic paradigms together. Such an approach is inherently hard
to deal with due to the theoretical and technical difficulties that arise when a
system, whose kinetic rates range among different scales, is split into a multiple
observation-level model accounting for different computation strategies depend-
ing on the level of observation [19]. Nevertheless, such an approach has been
already pursued for simulating complex biochemical systems [9,17] and also in
the processing of proteomic data® [20].

Our work here contributes to this research area, but it is still far from adding
substantial knowledge about this possibility. Despite this we will show how a
hybrid strategy to biochemical system modeling can be implemented within

1 An interesting introduction to the use of hybrid algorithms in computational biology
can be found online at http://www.bioinfo.de/isb/2004/04/0024/main.html.

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 183-196, 2006.
© Springer-Verlag Berlin Heidelberg 2006

184 L. Bianco and F. Fontana

MP systems, by extending their deterministic evolution mechanism in order to
include randomness that is always present in biochemical systems.

Metabolic P (MP) systems [11,3] are rooted in the theory and formalism of
P systems [13,14], to which they couple a deterministic computational strategy
called P Metabolic (MP) Algorithm [12,1,3]. P systems have been envisioned
to find solutions for several problems [5]. In the meantime they have been a
fertile ground for the birth of stochastic algorithms for the representation of the
evolution of biochemical systems.

The P system community has approached the question of stochastic evolution
in several ways. One strategy is known as Dynamical Probabilistic P systems, and
employs maximal parallelism both at the rule and object level: there, the prob-
ability of tossing a rule is dynamically calculated by starting from the multiset
of objects that are present in the system during a transition, as well as from the
kinetic constant associated to the rule. Another is called Multi-compartmental
Gillespie’s algorithm and its aim is to extend the Gillespie algorithm to a multi-
compartment environment as it happens for P systems having more than one
membrane [6,16,15].

By exploiting the versatility of the MP algorithm, we can straightforwardly
integrate a stochastic strategy for choosing the strength of the rules governing
the system evolution, in a way that the smaller the amount of a substance is,
the stronger the effects of randomness. In practice this is made by altering the
deterministic character of the reaction maps proportionally to their magnitude
[3]. In the end of the paper this hybrid algorithm is tested upon traditional case
studies such as the BZ reaction and the Lotka-Volterra dynamics [7,3,10,2].

In the following of the paper we assume the reader to be friendly enough with
the notation and the formalism of MP systems, whose leading ideas are that:

— the system evolves by allocating to each evolutionary rule object amounts
that play the role of reactants, as well as by obtaining from such rules object
amounts that play the role of products;

— nonlinear functions of the state of the system (that is identified by the
amount of every object), called reaction maps, are computed at the beginning
of each transition for assigning object amounts to the rules.

For further details on MP systems and the MP algorithm (shortly MPA) we
refer the reader to [11,3].

In this paper, after introducing the hybrid formulation of the MP algorithm,
called h-MPA, simulation examples are provided of two versions of the Belousov-
Zhabotinsky (BZ) reaction as well as the Lotka-Volterra dynamics.

2 The Algorithm

The idea of the hybrid algorithm is to switch from a completely deterministic
(MPA) to a completely stochastic approach (s-MPA) depending on the size of
the population dealt with by each rule. A threshold 7 is used to control the
switch between the two strategies and in this way the whole system becomes

Towards a Hybrid Metabolic Algorithm 185

a stochastic-deterministic hybrid system (h-MPA). If the population is small
compared to the threshold, the stochastic strategy should be preferred, otherwise
the deterministic strategy is able to provide an acceptable approximation of the
dynamics and is thereby preferable.

In principle, for each rule a deterministic or stochastic strategy has to be
chosen according to the size of the population it deals with. Let us suppose to
have a rule r : XY — ..., and to fix a threshold 7. If

min(¢(X),q(Y)) <,

then the strategy of application of r is chosen to be stochastic, else it is
deterministic—q(Z) denotes the amount of the species Z present into the system.
Note that this minimum gives the bottleneck of the reaction, but it is different
from the limiter of the standard metabolic algorithm because here we do not
take into account the strength of the rules. A population, then, undergoes a
stochastic dynamics if its size is smaller than the threshold.

Of course, due to cooperation, a population can undergo a stochastic dynamics
even if it is bigger than the threshold, but it is involved in reactions dealing with
at least one reactant whose total amount in the system is below the threshold.

What do we mean by stochastic strategy? The idea is to keep a “population
perspective” of the dynamics, as in the spirit of the metabolic algorithm. Ac-
cordingly, a stochastic strategy for the simulation of a rule r with the system in
state s consists in:

i) evaluating the reaction map F,.(s) as in the deterministic MPA;
ii) picking up a random number from a probability distribution depending on
F.(s), let us call this number v;
iii) applying the rule as in MPA by using v instead of F,.(s) as a reaction map,

where a generic state s can be thought as a vector of concentrations of all the
elements of the system (that are assumed ordered) and it is denoted as s-M P A(s)
(we denote with M PA(s) the purely deterministic evolution of state s).

This pseudo-algorithm gives an intuitive idea of the process, but it does not
simulate properly the application of rule r (for example, we need to specify
stochastic reaction maps of all reactants of rule r). In Subsection 2.3 a full
description of the hybrid algorithm is given. Before entering the description of
the algorithm, another preliminary question need to be addressed.

How do we quantify the dependency of the probability distribution on F..?
The idea is to respect somehow the shape of the (deterministic) reaction map
in the random choice of the stochastic reaction map. This is because reaction
maps should take into account the features of the interactions between elements
of the system and with this respect it seems reasonable to consider them as
“independent of the scale” and thereby valid also for small populations of objects.
Nevertheless, the generality of the approach allows the modeler to specify a
different shape for the reaction maps employed in the stochastic part of the
algorithm, but since this is not limiting, here we will not exploit this capability.

One possible implementation of the random step (ii) is to generate a random
number v by using a pseudo random sequence generator (PRSG) with a gaussian

186 L. Bianco and F. Fontana

distribution of mean F.(s) and a suitable variance, allowing a certain degree of
variability in the dynamics.

2.1 PRSG

Standard Matlab (but not only it) provides a primitive for reckoning a (pseudo)
random number chosen from a normal distribution with mean zero and variance
one. If we denote with v,,,, such a random number when obtained from a normal
distribution, then

Urnd = M + 0 - Unor
is a (pseudo)random number chosen from a gaussian distribution with mean m
and variance o2

This expression does not necessarily produce positive values. As reaction maps
cannot assume negative values, our PRSG skips eventual negative values. This
strategy introduces a distortion of the gaussian paradigm, and in the future we
will look for a more coherent random generation of numbers.

In all experiments we have used the PRSG to obtain a stochastic reaction
map by starting from a deterministic one F. evaluated in a certain configuration
s of the system, thereby we have used m = F,.(s) as mean value and (see two
histograms of random sequences of 100000 numbers depicted in Figure 1) with
0% =0.5- F,(s)? as variance.

Figure 1 suggests that o2 = 0.5 - F,.(s)? is a possible choice for the variance,
giving enough variability in the distribution of the random number.

2.2 Deterministic, Stochastic or Both?

A sudden switch from the deterministic strategy (when the algorithm deals with
populations larger than the threshold) to the stochastic one seems to be un-
realistic. For instance, according to Schrodinger, a system’s tendency toward a
random behavior is inversely proportional to the square root of the number of
molecules [18].

Rather, our strategy configures itself as a continuous switch between the two
regimes along various intermediate degrees of determinism. The idea in this case
is to use a sigmoid function, whose input is the threshold and a population
value and whose output is the degree of determinism of the system (i.e., a real
value d in the unitary interval [0, 1] determining the rate of change reckoned by
means of the deterministic algorithm). Of course, the value 1 —d is the degree of
stochasticity of the system. Given a threshold 7 and an input value x specifying
the population size of the species considered, the value of the determinism degree
d produced by the sigmoid function can be computed as

1
d= 1+ e(10/m)(r—2) (1)

and, as previously said, it gives the degree of determinism (or stochasticity) of
the system. Note that the choice of this sigmoid function is empirical: several

Towards a Hybrid Metabolic Algorithm 187

25
x10°

Fig. 1. Histograms of random sequences of 100000 samples with: mean 123 and variance
0.5 - 123% (upper left), mean 123, variance 123? (upper right), mean 42000, variance
0.5 - 42000% (lower left) and mean 42000, variance 42000? (lower right)

other functions can be employed (for example, the steepness of the sigmoid can
be increased by using b > e, such as 8, instead of the Napier’s base e of the
exponential, or it can be decreased by using b < e, such as 2).

In Figure 2 two examples of the sigmoid function (1) are represented; on the
left the threshold 7 is set to 5000, whereas on the right it is set to 450. We can
see that when the population size equals the threshold 7 we have a strategy
that is half deterministic and half stochastic, for this reason it may be better to
consider the following sigmoid function:

1

d - 1 +4i(/)(7_/_,t)

2)

where 7/ = 0.97, that is, the 90% of .

This newly defined threshold function is shown in Figure 3 (right). It is pos-
sible to appreciate that when the population size equals the threshold 7 the
strategy is deterministic at more than 95%. Although further investigation on
the threshold function is needed, in the experiments described in the next section
the modified sigmoid has been used.

188 L. Bianco and F. Fontana

s o

> o
o o o
S % o

3
>

450
)

0.4

o ¢
=

eterminisi
Determinism degree (d)

o

&

D
o o
[
o o
[

o
o

o
o

)

2000 4000 6000 8000 10000 0 100 200 300 400 500 600 700 800 900
Population size (x) Population size (x)

Fig. 2. Sigmoid function (1): population range 0-100000 7 = 5000 (left); population
range 0-900 7 = 450 (right)

[| [
0.9 X:5000 B X X 4
Y:0.9561 Y: 09561

o
@

o o
® ©

e
3

T)
3 3
206 206
S 3
£ 05 £ 05
€ £
€ 04 E 04
8 8
3 3
- a

o
S

o o
S o

)
)

=)
=)

0 2000 4000 6000 8000 10000 0 100 200 300 400 500 600 700 800 900
Population size () Population size (x)

Fig. 3. Sigmoid function (2): population range 0-100000 7" = 5000 (left); population
range 0-900 7' = 450 (right)

2.3 h-MPA

The idea of the algorithm is to apply each rule in a deterministic way whenever
the population involved in it is bigger than a predetermined threshold; in turn,
a rule is applied in a stochastic way whenever the population it deals with is
below the threshold. For each rule, the total (i.e., not weighted by reaction
maps) amount of the bottleneck is reckoned (the bottleneck of a reaction is the
reactant whose total amount in the system is the lowest one when compared with
the amounts of all other reactants of the rule) and a sigma function is calculated
on it in order to obtain the determinism degree of the rule. Then, according to
this determinism degree, the rule is applied partially in a deterministic way and
partially in a stochastic way.

Let us assume a system specified by means of n rules r1, ..., 7, defined over the
alphabet A, initially in a state sg, and let 7 be the deterministic degree threshold
discussed previously. If we denote with dj (s;), ..., dy,(s;) the determinism degrees
of each of the n rules (calculated as we will see in a while), we can express
the dynamics of the system as the sequence sy, s, ... where a transition from
a generic state s; to the next one can be calculated by computing both the

Towards a Hybrid Metabolic Algorithm 189

stochastic and deterministic variation for all the rules and then weighting them
according to the corresponding determinism degree. In particular, given a rule 7;
with 1 < j < n, its variation induced on the state s;, 6,,(s;), can be calculated
as:

6,,(5:) = dy(s:) - MPA;(s;) + (1 — dy(s,)) - s-MPAy(s,)

where M PA;(s;) is the deterministic application of rule r; to the state s; while
s-MPA,(s;) is the stochastic application of rule r; to the state s;.

A transition from a state s; to the next one s;;1 by means of the hybrid
metabolic algorithm can be described by the following meta-code:

Step 0a: Deterministic reaction maps computation. The set of deterministic
reaction maps is calculated in the current state:

D L
Fo(si) Vji=1,...n.

Let us denote with FP(s;) the set of all deterministic reaction maps in the
state s;.

Step Ob: Stochastic reaction maps computation. The set of stochastic reac-
tion maps is calculated in the current state:

FS(s;) = RND(FP(s:),05- (FP(s:))) Vji=1,...n

where RN D(a, b) denotes a gaussian distributed random number, computed
as seen before, with mean a and variance b, for a,b € R. Note that, as similar
to what is made in the 7-leap method, while doing this calculation we have
implicitly assumed constancy of the state [8].

Let us denote with F9(s;) the set of all stochastic reaction maps in the
state s;.
Step 1: Single rule variations. Deterministic and stochastic variations of
each rule to each object of the system are computed.

For each couple (r;, X) with j =1,...,n and X € A, assuming each rule
to have the form r; = a; — 3;:
o) If X € a; AND X ¢ (3;, then set both the deterministic and stochastic

variation induced by 7; on X respectively to:

62’)((52') =0

6’;?;',X(Si) == 0
and goto the step o) of the next couple (if any), otherwise goto step i).

i) Calculate the rate d; as:
1. Find the bottleneck? of reaction 7;:

X = }gl’élél] q(Y).

2 Other choices for the bottleneck calculation are also reasonable; as it takes into
account the size of the population involved in each rule instead of the global size of
populations, the choice made here simplifies the algorithm.

190 L. Bianco and F. Fontana

2. The total amount of the bottleneck is calculated
x = q(X).

3. The deterministic rate is computed

1
- 1+ 40_287 (0.97—z) "

ii) Calculate the deterministic variation induced by r; on X, 627){ (s;) as in
the standard metabolic algorithm with reaction maps taken from FP(s;).
iii) Calculate the stochastic variation induced by r; on X, 67*?]_ x(si) as in the
standard metabolic algorithm with reaction maps taken from F9(s;).
Step 2: Global variations and system update. The global deterministic AL
(s;) and stochastic A% (s;) variations are calculated by the weighted sum of
all single rules contributions, VX € A:

AX Si) Zé’” x(si)

A% (si) Zér x(5:) - (1—4dj)

Xit1 =X, + Ax(si) + AX(Si)
where X; denotes the amount of species X in configuration s;.

Note that in the case of systems dealing with populations instead of concentra-
tions a rounding policy has to be devised.

3 Case Studies

The case studies presented in this section have been implemented using Matlab,
and resulted in numerical simulations whose computation typically took some
seconds.

The first case study is the BZ reaction, that is discussed in two distinct vari-
ants, while the second case study is the Lotka-Volterra predator-prey system.

3.1 BZ (Model 1)

The first Brusselator model is composed by the following set of rewriting rules
and deterministic reaction maps:

rl: A — X F.1 =10
r2: XXY — XXX Fra =900¢(X)%q(Y)
r3: X — Y F.3 =200¢(X)

rd: X — A F.y =5q¢(X).

Towards a Hybrid Metabolic Algorithm

6000

5000

4000

> 3000

2000

1000

1000

2000

3000
X

4000

5000

60

00

6000

5000

4000

> 3000

2000

1000

1000

5000

6000

conc

>

191

7000
6000
5000 q

I
4000 ‘
3000
2000} |

1000

150

6000

5000

4000

3000

2000

1000

0
0 1000

2000

4000

5000

6000 7000

2000 3000 4000 3000
X X

Fig. 4. Two realisations of a hybrid simulation of the Brusselator (7 = 2000, deter-
ministic rate of r1 set to 0.5). Corresponding phase space representations are depicted
on the lower part of the figure.

The initial amount of objects X and Y are set respectively to 50 and 5000
and both procedures deal with integer objects (the contribution of all rules are
floored to the nearest small integer). The deterministic rate that multiplies the
variation obtained by the rule is a real value in general, hence for this reason we
can have real values in the dynamics.

Note that, due to the fact that A is not a population, we need a strategy to
deal with rule r1, that is, we can decide to have a either a completely deter-
ministic feeding of the system, a completely stochastic one, or every degree of
determinism.

The algorithm can provide several behaviors depending on the value of the
determinism threshold 7. It can show a completely deterministic dynamics if
the threshold of determinism is set to 0, or conversely a completely stochastic
one, in the case of the threshold 7 — oo (or at least larger than the maximum
population size in the whole simulation) [3,12]. Hybrid solutions are obtained
for intermediate thresholds (see Figure 4, where 7 = 2000 and, on the right, we
can observe that the dynamics shows a slight stochasticity in the first instants
and then the oscillation is suppressed).

192 L. Bianco and F. Fontana

7000 T T T T 7000

Reactant
Product
1 6000

1 5000

1 4000

3000

H 2000

\ \ ul 1000
0

6000 8000 10000 0 2000 4000 6000 8000 10000
steps steps

Reactant
Product

6000

5000

4000

conc
conc

3000

2000

1000

0 2000 4000

7000 T T T T T T 7000

6000 £ 6000 [5\

5000 5000

4000 4000

Product
Product

3000 g 3000

2000 2000

1000 1000

0 - 0
0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
Reactant Reactant

Fig.5. Two realizations of completely stochastic simulations of the Brusselator (7 =
1099). Corresponding phase plots are shown in the lower figures.

3.2 BZ (Model 2)

The second Brusselator model deals with the following set of rewriting rules and
deterministic reaction maps:

rl: A — AX F.,=103

r2: X — Y F,.o =50

r3: Y — X F3=25-10"%¢(X)?
rd: X — A F.y=5

rb: X — X F.5 = 1000

r6:Y — Y F.¢ = 1000
r7:A— A F,7 = 1000.

The initial amounts for X and Y are respectively set to 1 and 10, while the
constant feeding element A has an amount set to 5 - 10%. The rate parameters
have been taken from [7]. Moreover, rounding has not been used.

Two completely stochastic realizations are depicted in Figure 5, where the
phase space is shown in the lower plots. Two hybrid realizations using different
thresholds are depicted in Figure 6.

Towards a Hybrid Metabolic Algorithm 193

8000 8000

Reactant
Product

Reactant
Product | |

7000 7000

6000 6000
5000 5000

4000 4000

conc
conc

3000 3000

2000 2000

1000 1000

6000 8000 10000 0 2000 4000 6000 8000 10000
steps steps

4000

8000 T T T T T T T 8000

7000 1 7000 r§

6000 1 6000

5000 1 5000

4000 4000

Product
Product

3000 1 3000 4

2000 1 2000

1000 1 1000

0 0
0 1000 2000 3000 4000 5000 6000 7000 8000 0 1000 2000 3000 4000 5000 6000 7000 8000
Reactant Reactant

Fig. 6. Two hybrid simulation of the Brusselator (7 = 1000 and 7 = 3000 respectively
for the left hand part and right hand part of the figure). Corresponding phase plots
are shown in the lower figures.

3.3 Lotka-Volterra

The Lotka-Volterra metabolic rewriting system is composed by the following set
of rewriting rules and deterministic reaction maps [2]:

Mn: X *Lxx F,=3.10"3

r2: XY 2 YY Fo=4-10"5 max(X(k), Y (k))
k3

r3: Y — A F3=3-10"3¢(X)
rd: X — X F.y=5
rb: Y — Y F.5 =5.

Moreover, the initial populations of both predators (Y') and preys (X) are set to
900 and, for each species, an inertia (i.e., specified by rules of the type X — X
accounting for objects that cannot react in the considered instant) equal to 5 is
also considered. Note that no rounding in the population dynamics is performed
in this case. As usual, we can have completely deterministic dynamics [2] as
well as a completely stochastic dynamics (see Figure 7). Hybrid behaviors can
be obtained for intermediate values of 7 (see Figure 8). An interesting case has
arisen in a simulation using 7 = 800: in this simulation the randomness has led

194 L. Bianco and F. Fontana

1000 1600
Prey
950 Predator | |
1400
900
1200
850
5 1000
o 8001 | %
g g
8 8
750 & goo
700
600
650 \
,/\/h 400
600 W "ﬂ/’
2y
550 . . . 200
500 1000 1500 2000 200 400 600 800 1000 1200 1400 1600
steps Prey

Fig. 7. Completely stochastic simulation of the LV system (7 = 1020), both evolution
(left) and phase (right)

1300 T T T 1100
Prey Prey
1200 | Predator |{ Predator
1000 q
1100
1000 900
900
800|
o o
§ 800 5
8 8
7
700 00
600 600
500
500
400
300 400
0 0
1300 1100
1200
1000
1100
1000 900
900
s 5 800
]]
g 800 3
o & 700
700
600 600
500
500
400
300 . . ; 1 . . 400
300 400 500 600 700 800 900 1000 1100 1200 1300 400 500 600 700 800 900 1000
Prey Prey

Fig. 8. Hybrid simulation of the LV system: 7 = 700 (left); 7 = 800 (right). Corre-
sponding phase planes are shown in the lower figures.

the system to rapidly fall toward the steady-state. Of course, this behavior is not
directly related to the choice of the threshold but, rather, to the random choices
performed in the simulation. Otherwise, it would be impossible to obtain this
dynamics from a purely deterministic simulation.

Towards a Hybrid Metabolic Algorithm 195

4 Conclusion

Although both deterministic and stochastic models for the simulation of bio-
chemical systems have reached a good maturity, only a few things have been
done in the direction of hybrid algorithms. We have shown here that this issue
potentially leads to interesting dynamic representations, especially if coupled
with the inherently versatile modeling formalism provided by MP systems.

Besides this, much still has to be done to make this strategy really competitive.
Possible improvements in the short run may lead to a more suitable definition
of the sigmoid function, and to a better tuned PRSG. In the medium and long
run, alternative formalization of the h-MPA can be envisioned. In particular, a
procedure accounting for two reaction maps for every rule, the former related
to the deterministic, the latter to the stochastic behavior, may lead to rich
realizations of a system evolution. For instance, it would be desirable to account
for constants which depend on the regime, by using deterministic as well as
stochastic rate constants that can be straightforwardly derived by exploiting the
known relationships existing between the two [6].

References

1. L. Bianco, F. Fontana, G. Franco, and V. Manca. P systems for biological
dynamics. In G. Ciobanu, G. Paun, and M.J. Pérez-Jiménez, editors, Applica-
tions of Membrane Computing, pages 81-126. Springer, 2006.

2. L. Bianco, F. Fontana, and V. Manca. Reaction-driven membrane systems. In
L. Wang, K. Chen, and Y.-S. Ong, editors, Advances in Natural Computation,
First International Conference, ICNC 2005, Changsha, China, August 27-29, 2005,
Proceedings, Part II, volume 3611 of Lecture Notes in Computer Science, pages
1155-1158. Springer, 2005.

3. L. Bianco, F. Fontana, and V. Manca. P systems with reaction maps. International
Journal of Foundations of Computer Science, 17(1):27-48, 2006.

4. Y. Cao, D. Gillespie, and L. Petzold. Avoiding negative populations in explicit
Poisson tau-leaping. J. of Chemical Physics, 2005(123), 2005.

5. G. Ciobanu, G. Paun, and M.J. Pérez-Jiménez, editors. Applications of Membrane
Computing. Springer, Berlin, 2006.

6. D.T. Gillespie. A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. J. of Computational Physics, 22:403, 1976.

7. D.T. Gillespie. Exact stochastic simulation of coupled chemical reactions. J. of
Physical Chemistry, 81(25):2340-2361, 1977.

8. D.T. Gillespie. Approximate accelerated stochastic simulation of chemically react-
ing systems. J. of Chemical Physics, 115(4):1716-1733, 2001.

9. E.L. Haseltine and J.B. Rawlings. Approximate simulation of coupled fast and slow
reactions for stochastic chemical kinetics. J. of Chemical Physics, 117(15):1357—
1372, 2002.

10. R. Illner, C.S. Bohun, S. McCollum, and T. van Roode. Mathematical Modelling.
American Mathematical Society, Providence, RI, 2005.

11. V. Manca. Topics and problems in metabolic P systems. In G. Paun and M.J.
Pérez-Jiménez, editors, Proc. of the Fourth Brainstorming Week on Membrane
Computing (BWMCY), Sevilla, Spain, February 2006. Fenix Editora.

196

12.

13.
14.

15.

16.

17.

18.

19.

20.

L. Bianco and F. Fontana

V. Manca, L. Bianco, and F. Fontana. Evolutions and oscillations of P systems:
Applications to biological phenomena. In G. Mauri, G. Paun, M.J. Pérez-Jiménez,
G. Rozenberg, and A. Salomaa, editors, Membrane Computing, 5th International
Workshop, WMC' 2004, volume 3365 of Lecture Notes in Computer Science, pages
63-84. Springer, 2005.

G. Paun. Membrane Computing. An Introduction. Springer, Berlin, 2002.

G. Paun and G. Rozenberg. A guide to membrane computing. Theoretical Com-
puter Science, 287:73-100, 2002.

M.J. Pérez-Jiménez and F.J. Romero-Campero. P systems: a new computational
modelling tool for systems biology. Transactions in Computational Systems Biol-
0gy, 2006. In press.

D. Pescini, D. Besozzi, G. Mauri, and C. Zandron. Dynamical probabilistic P
systems. International Journal of Foundations of Computer Science, 17(1):183—
194, 2006.

H. Salis and Y. Kaznessis. Accurate hybrid stochastic simulation of a system of
coupled chemical or biochemical reactions. J. of Chemical Physics, 122:1-13, 2005.
E. Schrodinger. What is life? With Mind and Matter and Autobiographical sketches.
Cambridge University Press, 1967.

T.E. Turner, S. Schnell, and K. Burrage. Stochastic approaches for modelling in
vivo reactions. Computational Biology and Chemistry, 2004(28):165-178, 2004.
X. Zhang. A hybrid algorithm for determining protein structure. IEEE Intelligent
Systems, 9(4):66-74, 1994.

Towards a P Systems Pseudomonas Quorum
Sensing Model

Luca Bianco!, Dario Pescini?, Peter Siepmann?®, Natalio Krasnogor®,
Francisco J. Romero-Campero?*, and Marian Gheorghe®

! Department of Computer Science, University of Verona
Strada Le Grazie 15, 37134 Verona, Italy
bianco@sci.univr.it
2 Dipartimento di Informatica, Sistemistica e Comunicazione
Universita degli Studi di Milano-Bicocca
Via Bicocca degli Arcimboldi 8, 20126 Milano, Italy
pescini@disco.unimib.it
3 School of Computer Science and Information Technology
University of Nottingham
Jubilee Campus, Nottingham, NG81BB, UK
{Peter.Siepmann, Natalio.Krasnogor}@nottingham.ac.uk
4 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Seville, Avda. Reina Mercedes, 41012 Sevilla, Spain
fran@cs.us.es
5 Department of Computer Science, The University of Sheffield
Regent Court, Portobello Street, Sheffield S1 4DP, UK
M.Gheorghe@dcs.shef.ac.uk

Abstract. Pseudomonas aeruginosa is an opportunistic bacterium that
exploits quorum sensing communication to synchronize individuals in a
colony and this leads to an increase in the effectiveness of its virulence.
In this paper we derived a mechanistic P systems model to describe the
behavior of a single bacterium and we discuss a possible approach, based
on an evolutionary algorithm, to tune its parameters that will allow a
quantitative simulation of the system.

1 Introduction

The quorum sensing is a particular form of cell-to-cell communication in bacteria
which exploits the concentration of a particular molecule, called signal, to “sense”
the population density of the colony. The quorum sensing regulatory network is
used by the individuals of the colony for collective synchronization and therefore
for a coherent control over the gene expression. In Pseudomonas aeruginosa this
mechanism is responsible for the effectiveness of the virulence of this bacterium
[14,23,10,9]. In fact, a single bacterium starts to express his virulence factors
only when it senses that the bacteria population has reached a certain threshold
level such that the host response will be inadequate.

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 197-214, 2006.
© Springer-Verlag Berlin Heidelberg 2006

198 L. Bianco et al.

The activation of a complex cellular response is what distinguishes the quorum
sensing as a communication regulatory circuit from other density dependent
responses such as the metabolization or detoxification of small molecules.

The simplest quorum sensing network known in Gram-Negative bacteria is
also the first one ever discovered [25,17]. It has been found in the Vibrio fischeri
bacterium, also known as Photobacterium fischeri and is nowadays considered
as the paradigm of this cell communication process. In this network two proteins
and one signalling molecule are involved. The R protein is a transcriptional regu-
lator, while the I protein is the synthase for the signalling molecule, also referred
to as the autoinducer. An important role is also played by the confinement of
the bacterial colony. The fact that the autoinducer molecule is not dispersed
in the environment allows its diffusion inside the individuals and therefore its
concentration sensing.

At low cell densities the I protein synthesizes the autoinducer at a basal rate
and the signal freely diffuses outside the bacterium. The concentration of the sig-
nal inside each bacterium is increased by the combined effect of the confinement
and the increase of the population. At this point, the binding of the R protein
with the autoinducer becomes more likely. The binding of the signal molecules
activates the R protein transcriptional regulator. Since the I gene is the target
of the R protein, the bacterium starts to produce more and more signal. The
regulation network signal autoinduces its transcription. In this way the high con-
centration of the autoinducer coordinates the transcription of all the genes that
are target of the R protein.

The quorum sensing in Pseudomonas aeruginosa is more complex, nevertheless
intriguing, since this bacterium uses two different quorum sensing systems which
interact with each other.

The aim of this work is to provide a P system model [15,16] of the bacterium
Pseudomonas aeruginosa quorum sensing focusing on the communication mech-
anisms. The parameters of the model will be tuned using an evolutionary al-
gorithm. Our long term aim is to reproduce the characteristic behavior of the
quorum sensing in Pseudomonas aeruginosa, namely, the switch between two
distinct stable steady solutions: the first describing the behavior of the non-
quorated bacterium (i.e., with low levels of autoinducer), the second modeling
its quorated behavior (i.e., the behavior obtained with high concentration of the
autoinducer molecule). Once the model will be entirely defined several simula-
tions with different strategies [6,20,18] will be run.

First of all, we address the modeling of the internal dynamics of one single
bacterium, tuning its kinetic constants in a way ensuring its non-quorated be-
havior. At a later stage, we intend to exploit compartmentalization of P systems
to model a colony of bacteria each of them internally specified according to the
same set of kinetic constants. In this respect we will extend the current model
to a Population P systems approach [3] that has been already used to express
some aspects of quorum sensing in bacterium Pseudomonas aeruginosa [22] and
for self-assembly problems [4].

Towards a P Systems Pseudomonas Quorum Sensing Model 199

2 An Initial Model

The first stage of our investigation is intended to describe the quorum sensing
related network of each bacterium to capture its main features into a mecha-
nistic model. The quorum sensing internal pathway of each bacterium is taken
from models discussed in [11,9] and a graphical representation of all elements
involved in it, as well as some relevant relationships between them, are depicted
in Figure 1.

— GO
—>
/'
()

(Rl) o—

1

r =BT
- I e

Fig. 1. The Pseudomonas quorum sensing model analyzed here (from [9]). Note that
double arrows denote reversible reactions, bold ones the degradation process and the
empty ones the inhibitory process.

According to this model, the quorum sensing pathway comprises two intercon-
nected signalling cascades. The main elements involved in the first one are pro-
teins LasR, RsaL, Lasl (as well as the genes involved in their production), the
autoinducer molecule 3-oxo-C'12-H SL and the active complex LasR-3-oxo-C12-
HSL. The key elements of the second system are the proteins RhIR and RhlI
(as well as the genes involved in their production), the autoinducer molecule C'4-
HSL and the active complex RhIR-C4-HSL. The first one of the two signalling
cascades is called las system because it was shown to regulate the expression
of LasB elastase. This pathway regulates other virulence factors such as LasA
protease, exotoxin A, alkaline protease A as well as the expression of at least two
genes of the zcp secretory pathway. The las pathway is positively controlled by
GacA and Vfr whereas it is inhibited by RsalL that, in turn, is positively regu-
lated by the active complex LasR-3-oxo-C'12-H S L and whose role is to repress
the transcription of the lasl gene.

The second signalling system involved in the model is named rhl system be-
cause it controls the expression of rhamnolipid via the production of rhlAB

200 L. Bianco et al.

operon. The autoinducer molecule in this case is C4-HSL and the active com-
plex is RhIR-C4-HSL. It has been shown that this cascade is necessary for the
production of some virulence factors like LasB elastase and LasA protease, as
well as pyocyanin, cyanide and alkaline protease. For this reason this signalling
system is also known as vsm (virulence secondary metabolites).

Although the corresponding autoinducing molecules are highly selective (and
thus not interchangeable at all), several interconnections between the las and
the rhl pathways of the quorum sensing in Pseudomonas aeruginosa are known.
One link between them has been already mentioned and it is constituted by
the LasB elastase, that needs both LasR-3-oxo-C12-HSL and RhIR-C4-HSL
for its production. More interestingly, the las system is at a higher level in the
hierarchical regulatory cascade, in fact LasR-3-oxo-C12-HSL can activate the
expression of the rhlR gene. In addition, the active complex LasR-3-oro-C'12-
HSL can bind to RhlR preventing it to form the complex RhlR-C4-HSL.

2.1 The Differential Equation Model

Many models for the quorum sensing in the Pseudomonas aeruginosa are pre-
sented in literature and usually they approach the phenomenon from two differ-
ent angles. The first one describes the colony behavior by summarizing individual
dynamics as a state change avoiding a precisely detailed representation of each
of the bacterium quorum sensing networks [24,1]. The second one describes in a
more detailed fashion the quorum sensing pathway for each bacterium with the
purpose to model the emergent behavior of the whole colony [11].

We think that the P system framework is particularly suitable for this second
approach. In fact, the modularity, the compartmentalization, the hierarchical
structure and the rewriting rules (all features of P systems [16]) allow a conve-
nient description of this reality.

In [11] a model of the las signalling system has been devised, but no descrip-
tion is given of the rhl system. The graphical description of the quorum sensing
pathway depicted in Figure 1 has been translated into the set of eight differential
equations presented in the next page. The correspondence between differential
equation symbols and elements in the pathway are summarized in Table 1.

The production of the activated complex P by means of the autoinducer and
the LasR protein (whose expression is given by the product of the constitutive
elements concentrations with a rate kra: kra RA) is an example of how cooper-
ative contributions are obtained in the differential equations approach by means
of the mass action law.

Basal rates productions and degradations are also taken into account, an ex-
ample of the former being the k17 element giving the basal production of LasR
protein (R), while an example of the latter is the degradation of the active com-
plex (P) represented by the element kpP. The production of messenger RNAs
from the corresponding genes is modeled with a Michaelis-Menten-like dynam-
ics depending on the concentration of the promoting factor, as it happens in
the case of the production of lasR and rsaL mRNAs (respectively r and s), the

Towards a P Systems Pseudomonas Quorum Sensing Model 201

P P
fi 1 f hy s .
rst modeled by V, K, 1P and the second by V K. 1P

mRNA (1) is also down-regulated by the presence of RsaL protein (S) and this

The production of las]

1
is modeled by V; K+ PKstS in which the Michaelis-Menten-like dynamics
is attenuated by an inversely proportional function of the Rsal concentration.
dP
= kraRA —kpP
dt RA P
dR
at = —kpaRA+kpP — krR + kir
dA
g —kraRA+ kpP + koL — kaA
dL
= ksl — kL
dt 3 L
(1)
dsS
= kys — ksS
ar TS
ds P
it =V, p ks
dr P
- er - kr
dt K,4p o
dl P 1
=V — kil +1
dt 'K+ PKg+s Tt

Unfortunately, no value is known for the 21 kinetic constants present in the set
of differential equations (1). To overcome this problem, in [11] several simplifying
assumptions are considered, that lead to fewer equations and fewer parameters
as well.

In the following we will describe a possible parameter estimation strategy
to tackle this problem (see Section 4). The idea is to relay to this differential
equations system as a “synthetic bio-experiment” used to confront our model to.

2.2 A First P Systems Model

Several attempts to simulate the quorum sensing in bacteria are present in P
systems literature [5,19], but, as far as we know, none of them deals with the
Pseudomonas aeruginosa bacterium.

Here we describe a direct P systems translation of the differential equation
model previously discussed [11]. Formally, the Pseudomonas P system is

IT = (AvﬂawaR)

202 L. Bianco et al.

Table 1. Variable-concentration correspondence between the differential formulation
and the graphical description of the quorum sensing model of Pseudomonas aeruginosa

(from [11])
Variable

R
A
P
L
S
T
1
s

where:

Concentration
LasR
3-oxo-C12-HSL
LasR-3-0xo-C12-HSL
LasI
Rsal
lasR mRNA
lasI mRNA
rsal mRNA

— A= {geneR,geneL, R, A, P,L,S,r,l,s} is the alphabet;
— p = []o is the membrane structure: since we address the single bacterium
case, it contains the cellular membrane only;

w = geneR genelL is the initial configuration that comprises only LasR and

LasI genes, thus is represented as the string;

— R={r1, - ,r1s} is the set of the rules:

r1: geneR — geneR+1r
ro: T — A

rg:oT —r+ R
ry: P — P+r
rs: R+A— P

r¢: P — R+ A
rr: P — P+s
rg: S — A

rg: S — A

T10 : S — s+ S8
ri: P — P+
19t 1l — I+ L
ri3: 1 — A

714 : genel, — genel +1
7’152L — A

6 : L — L+ A
ri7: A — A

rig: R — A

Note that, symbols in A correspond to the variables of the differential equation
and their correspondence to the biological reality is given in Table 1. Two new
elements (i.e., geneR and genelL) are introduced, which account for the genes
involved in the basal production of the LasR and Lasl mRNAs.

Towards a P Systems Pseudomonas Quorum Sensing Model 203

Each one of the rules in R is directly obtained from the differential description
of the considered quorum sensing model. For examples, we can see that rule ry
models the basal production of the LasR mRNA, while rule ro expresses its
degradation, moreover rules r; and r¢ describe the reversible reaction of the
complex P formation by starting from its fundamental constituents R and A.

Due to the different level of abstraction in the representation of different
parts of the model (as in the case of the Michaelis-Menten-like kinetics that
are modelled with a higher level of abstraction than other components of the
system), we cannot directly apply mechanistic algorithms [2] to this model. For
this reason, we will apply to this set of rules only the strategy known as Metabolic
Algorithm (for details refer to [6]), whose simulation results, together with some
numerical solutions of the set of differential equations (1), are shown in Section
2.3 for different choices of parameters.

The metabolic algorithm simulation needs to specify a set of reaction maps,
each one associated in a one-to-one manner to the rules of R. Reaction maps [6]
are functions defined over the state of the system (i.e., multiplicity or concen-
tration of all elements of the system depending on the case), that are used by
the Metabolic algorithm to allocate objects to rules. For example, as we will see
in a while, F},, that is the reaction map of rule r1, is simply the constant rate
of production of LasR mRNA. We can have more complicated reaction maps,
as in the case of rule r4 that takes into account the Michaelis-Menten-like pro-
duction of the LasR mRNA elicited by the LasR-30xo-C12-HSL complex. As
in the case of the rules, that specify the physical interactions and connections
between the elements of the modeled reality, we can obtain this information from
the differential equation formulation. The set of reaction maps employed in our
simulations are the following:

Frl =To FT‘2 — Ry
F, =k Fry = "0
Fr5 - kRA FT‘G = kP
Vs —
Fr7 = KS-.&-P FT‘g = k‘s
F’r’g - 4 V FT‘lo - k'S (2)
Fru = (KL+P)-Z(KS+S) sz = k3
FT’ls =k FTMZZO
F’I‘15 = kL FT16 - k2
F’I‘17 - kA FTlg = kR

Note that all reaction maps are constant apart from three of them. We have al-
ready discussed the meaning of the reaction map associated to rule r4; analogous
considerations hold for F;.. as well. More interesting is the reaction map associ-
ated to rule r1; that takes into account the inhibitory effect of RsaL protein on
the production of the las] mRNA.

Remarkably, the method allows the current description of different parts of
the system at different abstraction levels; moreover it is still applicable if all
reaction maps are constant, a condition required by mechanistic algorithms.

204 L. Bianco et al.

In the following some simulation results are shown, as well as the numerical
solution of the differential equation system, for some chosen parameters.

2.3 Simulation Results

Here we show how the same model-reality can be described with two different
approaches. As mentioned before, we do not have precise values for the model
parameters. For this reason, as a first comparison attempt, we make a completely
fictitious choice for them. As a further work, we plan to adopt some automatic
way for the parameter estimation (see Section 4 for more details). The initial
choice of parameters is here shown, and all the subsequent changes to this initial
parameter set will be explicitly mentioned:

kra =10 kp =2

kr =5 ki =
B =1 ka =
ks =1 kr =1
ks =1 ks =
v, =1 K, =1 (3)
ks =05 Vi =
K, =1 kr =
To =1 VYZ =
K =1 k=1
loh =1 Kg=1

The lack of biological information makes this choice completely arbitrary and
prevents us to compute the dynamics of the system by means of stochastic
algorithms such as the Gillespie one [12,13], Dynamical Probabilistic P Systems
[20] or the Multi-compartmental Gillespie [18].

In this section we compare the dynamics generated by the metabolic algo-
rithm with the solutions obtained for the corresponding differential equation
system. Figure 2 depicts the case in which parameters are chosen according to
(3). The dynamics of each species reaches a steady state in both approaches,
but the relative position of the species is different and this leads to two distinct
system dynamics. Moreover, the time of the two systems differs; in the solution
of the differential equation system this is measured in arbitrary units (due to
the arbitrary choice of parameters), while in the model based on P systems the
time is measured in steps of system evolution. In Figure 3 the choice of V; =0
switches off rule r1; of the P system model and in this case the results of the
two different approaches qualitatively match each other. Finally, the last choice
of parameters is aimed at obtaining a quorum sensing consistent behavior, that
is, in the case of a single bacterium in the environment it should not quorate
and thus the concentration of the complex P should reach the basal rate. Ac-
cordingly, we set Kra to the value 0.1. In this case, depicted in Figure 4, the
dynamics produced by the two approaches is qualitatively similar again.

Towards a P Systems Pseudomonas Quorum Sensing Model

boa

a

0 5 10 15 20 25 30

—oor>»DO

205

coavon
00D

5000 10000 15000 20000

25000

30000

Fig. 2. Results for the quorum sensing model with parameters showed in (3) using
ODE approach (left) and metabolic algorithm (right)

Fig. 3. Results for the quorum sensing
and metabolic algorithm (right)

o8

06w

04

avon
—~o0r>Do

soavonm
—~0or»DT

L L
15000 20000

L
25000

30000

model with V; = 0 using ODE approach (left)

avonm

—oor>»DO

a

S

o
2
o
i

coavon

00D

0

5000 10000 15000 20000

25000

30000

Fig. 4. Results for the quorum sensing model with parameters kra = .1 using ODE
approach (left) and metabolic algorithm (right)

3 Towards a Detailed P Systems Model

Although the preliminary P system model described in Subsection 2.2 showed
that we can obtain comparable results with the current models presented so

206 L. Bianco et al.

far, our intention is to refine the model defined above in order to allow the
simulation of its dynamics by means of mechanistic approaches like Gillespie ap-
proach [12,13], Dynamical Probabilistic P Systems algorithm [20] or the Multi-
compartmental Gillespie method [18]. In addition, this model is completely
driven by the set of differential equations and in same cases it is not entirely
biologically accurate. For example, in the case of rsaL mRNA production, when
different from other mRNAs productions, it does not show any basal rate pro-
duction. Moreover, it does not consider the binding of the transcription factor
to the appropriate gene site necessary to start the transcription process of the
DNA into the mRNA.

The formal description of the detailed P system model of Pseudomonas quo-
rum sensing is the following:

IT = (AvﬂawaR)

where:

— A={Vfr,lasRgene, VfrlasRgene, mlasR, LasR,30HSL, LasR.30HSL,
LasR.30HSL.lasRgene,laslgene, LasR.30HSL.laslgene, mlasl, Lasl,
r8aLgene, LasR.30HSL.rsaLgene, mrsaL, RsaL, RsaL.lasIjene} is the al-
phabet;

— p = []o is the membrane structure: since we address the single bacterium
case, it contains the cellular membrane only;

—w = Vfr" lasRgene laslgene 780Lgene is the initial configuration that
comprises only the three genes and the protein Vfr that is needed to initiate
the transcription and should be initialized at an high amount n € N;

— R={r1, - ,ras} is the set of the rules:
r1: Vfr+lasRgene F, VirlasRgene + Vfr
ro 1 VfrlasRgene K2, lasRgene
r3: VfrlasRgene K, VfrilasRgene + mlasR
ry: mlasR S, A
rs: mlasRk s, LasR + mlasR
r¢ : LasR LIRSY
r7: LasR+30HSL 2, LasR30HSL
rs: LasR.30HSL 5, LasR+ 30HSL
ro: 30HSL LN
r10 : LasR30OHSL + lasRyene - LasR.30HSL.1asRgene
r11 ¢ LasR30HSLlasRyene -5 LasR.3OHSL + lasRyenc
k12

r12 : LasR.30HSL.lasRgene — LasR.30HSL.lasRgene +mlasR
ri3 : LasR30OHSL + laslyene ~2 LasR30HSL.laslyene
ri4: LasR30OHSLlaslyene % LasR30OHSL + laslyene

Towards a P Systems Pseudomonas Quorum Sensing Model

:mlasl
: Lasl
: Lasl
: LasR.30OHSL + rsaLgene
: LasR.30HSL.rsaLgene

: LasR.30HSL.rsaLgene
:mrsalL

:mrsalL

: RsaL

: Rsal 4 laslgene
: RsaL.laslgene

: RsaL.laslgene

: LasR.30HSL.lasljene

:mlasl

kis
BALLN
k
2500
k17
=5
k
RN

k19
—

Lasl + mlsal

Lasl +30HSL

207

LasR.30HSL.lasljene +mlasl

ka0, LasR.30HSL.rsaLgene

ka1
RALLN

LasR.30HSL + rsaLgene

bz, LasR.30HSL.rsaLgene + mrsal

k
23)\

k2, Rsal + mrsal

k25 A

kas, RsalL.laslgene
RsaL +lasljene
RsalL.laslgene + mlasl

ka7
AU

k2s
RN

where k;, for i =1,---,28, is the rate constant associated to the ith rule.

This system is depicted in Figure 5 where numbers next to arrows refer to
the corresponding rules. Note that arrows with two numbers denote reversible
reactions modeled in the P system description with two distinct rules.

To give some ideas on how the model has been built we explain in details the
process that, starting from the laslgene, leads to the formation of the complex
LasR.30HS L, the remaining part of the model follows a similar derivation. The

@
5

e

G’
1
[1

I

-

19
el

17 16/'

s

lasI

20

2,
S
E%

1.

rsalL

I 1

13
26
’—T —

Fig. 5. The Pseudomonas quorum sensing detailed model analyzed here. The number

next to each arrow refers to the corresponding P system rule.

208 L. Bianco et al.

production of LasI mRNA (mlsal) can be done in two ways depending on the
transcription factor bound to the laslgene gene. In fact, when LasR.30HSL
binds to the laslgene (rule ri3), it activates the transcription of laslgene gene
into mlasI mRNA (rule r15) with a rate ki5. The RsaL protein can bind to
the laslgene gene as well (rule rys), but in this case, the same transcription
(modeled by rule ra5) has different rate kog. Since the biology of the process tells
us that RsalL protein inhibits the mRNA production, we add the constraint
that kog < k15. The mlasI mRNA can either be degraded (rule r16) either be
translated into the LasI protein (rule r17). The latter can in turn be degraded
(rule mg) or it can produce the autoinducer molecule 3OHSL (rule r9), that
can bind to the LasR protein and form the complex LasR.30HSL (rule r7) or
be degraded (rule rg).

As far as we know, no value for the kinetic constant necessary for the simu-
lation of this dynamics is known in literature. For this reason we plan to adopt
some automatic tools for exploring the huge parameter space. In the following
section we describe a genetic algorithm (GA) fitting approach.

4 Parameter Estimation

In previous sections we showed two alternative models of quorum sensing and
qualitatively compared them against a differential equations based model. In this
section we show, as a proof of concept, how P system models can be quantita-
tively fitted to observed data. In this proof of concept section we consider the
ODE model as the golden standard against which the P system must be fit-
ted. That is, the ODE is a proxy for a biological experiment from which we
could measure a variety of molecular concentrations. In order to fit the P system
models to the ODE’s observed data we perform parameter optimization using
an evolutionary algorithm (EA). Our EA has been specially developed for opti-
mizing a range of design and manufacturing processes. It has been successfully
tested on a variety of complex systems and nano-particles self-organization sys-
tem [21]. Our evolutionary system is web-server based and can be tailored to
solve a broad range of problems. The number and data types of genes in the
chromosome, along with the parameters for the GA, including the users choice
of selection, replacement, mutation and crossover mechanisms can be specified in
the web-based configuration module. The later builds an XML script as output.
This script, along with a plug-in style problem specification class, which most
importantly includes the fitness function, configures the evolutionary algorithm
to the specific problem at hand. The execution of the evolutionary algorithm
can then be started and observed over the internet through a Java servlet. This
evolutionary engine also caters for cpu-intensive optimization problems, like the
one we investigate here, by distributing the execution of the algorithm on a large
computer cluster. Moreover, the web-server also allows simultaneous executions
of the evolutionary engines on different problems. The web-server can be ac-
cessed (under request) from www.chellnet.org. For a schematic representation
of the evolutionary engine please see Figure 6.

Towards a P Systems Pseudomonas Quorum Sensing Model 209

— no data types — data type representation and bounds
- no problem specific representation — evaluation module ("plug—in")
— no parameters — evolutionary engine parameters

AN

Generic Evolutionary Engine j—> Specialised Evolutionary Engine T> Results

Evaluation module

Ve

problem-—specific

Web-based configuration module Web~based execution module

Fig. 6. The ChellNet Evolvable Chellware Engine

|
|

|
|
| |
|

XML, v I Java servlet

|
|

|
|

|
|

|
|

In what follows we describe the fitness function used to fit our P systems to
the observed time series.

4.1 The Fitness Function

The evolutionary engine is used to adjust the parameters of the P system as to
fit the observed target w € N time series Sygr = {sigt}izlv... w simultaneously,
where each of the w time series corresponds to one of the species concentrations.
In turn, the P system model generates w time series S= {s'};—1.... .. The evo-
lutionary algorithm goal is to minimize the error between S;4; and S. Although
simply put, this error must be done carefully as the sampling of the P system’s
S and that of Si4 are different. If sigt € Sigt, with (dropping the super-index
for simplicity) st = {y(0),y(€),y(2¢€),...,y(n e)} and € the time step precision
for Stge, and s = {y'(0),...,y'(t}),...,y'(t;,)} there is no direct mapping from
t (in s) to ke (in sig) for some k > 1 as the time interval simulated is not
uniformly sampled under a Gillespie dynamics. In order to compute the error
between a given y'(t;) and a candidate interpolated from s we need to in-
terpolate the value §(¢}) that s;5 would take at ¢’. Note that the only point in
time that is guaranteed to match in both time series is tg, so we can obtain the
index

/‘ _ tO

t
k=17 7).

With the index £ we can interpolate s;4; between the time steps ¢, and tj41:

~ y(terr) —y(te)
6 b)

210 L. Bianco et al.

that is, the slope of the segment of line that runs between points (tx, y(tx)) and
(tk+1,Y(tr+1)). With ¢ we can interpolate the value of s at time ¢ with

9(t5) = y(te) + q (t; — tr).

With this provision in mind the parameter learning problem becomes

> o [9(t5)—y ()]
min Z thes”’S’ESHﬂzT'w{y(t_’j)’y’(t’j)} (@)
S
Eq. 4 is used by the evolutionary algorithm to fit the P system to the data.
This fitness measure takes into account all the time series to be approximated
and the quality of the sample of each time series.

4.2 A Case Study: The Michaelis-Menten Dynamics

In order to demonstrate the feasibility of automatically tuning a P system with
an evolutionary algorithm we choose a simple case study: we apply the evolution-
ary algorithm to the problem of matching the kinetic constants of a Michaelis-
Menten dynamics (MM). The MM dynamics is numerically obtained through a
set of differential equations that simulate the following enzymatic reactions:

k
E+S<k—_2>Esﬁ>E+P (5)
1

where FE represent the enzyme catalyzing the reaction transforming the substrate
S into the product P. The reaction takes place in two different stages, the former
being the reversible formation of the active complex ES, the latter being the
production of P. All the details regarding the MM dynamics can be found in
[7,8].

As mentioned above these reactions are modeled by means of the following
set of differential equations:

dc[lf] — — k1 Eo[S] + (k1 [S] + ko) [ES)]

d[ftS] = k1 Eo[S] — (k1[S] + k2)[ES] ©)
apl

P ka[ES]

where Ej represents the concentration of the total amount of enzyme (i.e., the
free enzyme plus that bounded to the substrate to form the complex E.S), while,
as usual in biochemistry, [X] represent the concentration of the species X. The
reactions (5) can be straightforwardly translated into a P system having only
one compartment and three rules (each one referring to exactly one of the bio-
chemical reactions mentioned), whose dynamics can be calculated by means of
the Gillespie algorithm.

Towards a P Systems Pseudomonas Quorum Sensing Model 211

Bimng OB

0.007
0.0085
00086
00064
0.nog2

0.006
0.0058
0.0056
00054
0.0052

0.005
0.0045
00046
00044
0.0042

0.004
00036

Lo
e
0.0032

0003
00026
0.0028
0.0024
00022

0002
00018
0.0018
00014
00012

0.001
0.0008
0.0008
0.0004
00002

a
o1 2 3% 4 5 B 7 & 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 57 38 39 40
Generation

Fig. 7. Fitness progress of the parameter learning process. Best individual and average
error in the population is shown.

Without loss of generality, we arbitrarily fix the three kinetic constants to k1 =
1000, k2 = 1 and k3 = 0.05 and we numerically solve the differential equations.
The initial conditions used are 0.001 M for the initial substrate S and 0.5 -
1073 M for the initial concentration of the enzyme E (no product P neither
active complex ES is present at the beginning). We thus obtain three time series
that represent the target behavior the P system must imitate. The evolutionary
algorithm thus must coerce the P system to mimic as close as possible the
MM dynamics (with an imaginary volume fixed to 1.67 - 1071 liters, needed
to translate concentrations into objects and deterministic rate constant into
stochastic ones).

Figure 7 shows the progress of the evolutionary engine while trying to match
with a P system the time series generated by the Michaelis-Menten process.
Figure 8 shows the actual display of the evolved P system’s concentrations and
the target concentrations.

212 L. Bianco et al.

+ Substte (optimam) ¢ Ermyme (optimm) + Product (optimm) « Substoteiemolmed) = Evmme (wwobred) ¢ Product {smobed)

11500004
11000004
10500004
1000000
950000
400000+
500004

000004

7500004

TO0000{

650000

BO0000

Conceritration

550000

5000004

4500004

400000

3500004

300000

2300004

2000004

150000

1000004

00004

Tirre:

Fig. 8. The target Michaelis-Menten concentrations and the evolved P systems ones

5 Conclusions and Further Work

We have briefly described a part of the quorum sensing network in the Pseudomo-
nas aeruginosa. Starting from a differential equations based model we have
provided a P systems version of it and we compared the dynamics of the two
approaches. In order to apply different simulation strategies on this intriguing
phenomenon we provided a more detailed, mechanistic model which, we believe,
is closer to the biological reality. The lack of biological information regarding
the dynamics of the system led us to use an automatic way for estimating them
by using an evolutionary algorithm approach that offers a reliable and effective
method in this respect.

An immediate step further, after obtaining all the parameters regulating a
single bacterium dynamics, is to extend the proposed model at a colony level,

Towards a P Systems Pseudomonas Quorum Sensing Model 213

exploiting the compartmentalization offered by P systems and already estab-
lished population P systems models.

Other important developments are related to the use of experimental data
to tune the dynamics of our specifications such as to simulate real biological
processes. In this respect the use of model checking methodologies, already under
consideration in a paper under preparation, will contribute towards validating
certain properties of the systems modeled.

On long term we believe that these steps can represent the first stage toward a
quantitative analysis that will hopefully lead to a successful drug design process.

Acknowledgements. N. Krasnogor and P. Siepmann acknowledge the EPSRC
for funding project EP/D021847/1.

References

1. K. Anguige, J.R. King, J.P. Ward, and P. Williams. Mathematical modelling of
therapies targeted at bacterial quorum sensing. Mathematical Biosciences, 192:39—
83, 2004.

2. A. P. Arkin. Synthetic cell biology. Current Opinion in Biotechnology, 12:638-644,
2001.

3. F. Bernardini and M. Gheorghe. Population P systems. Journal of Universal
Computer Science, 10:509-539, 2004.

4. F. Bernardini, M. Gheorghe, N. Krasnogor, and J.-L. Giavitto. On self-assembly
in population P systems. In C.S. Calude, M.J. Dinneen, G. Paun, and M.J. Pefez-
Jimeriez, editors, Unconventional Computation. 4th International Conference, UC
2005, pages 46-57, 2005.

5. F. Bernardini, M. Gheorghe, N. Krasnogor, R.C. Muniyandi, M.J. Pérez-Jiménez,
and F.J. Romero-Campero. On P Systems as a modelling tool for biological sys-
tems. In R. Freund, G. Lojka, M. Oswald, and Gh. Paun, editors, Pre-Proceedings
of the 6 Th International Workshop on Membrane Computing (WMC6), pages 193~
213, 2005.

6. L. Bianco, F. Fontana, and V. Manca. P Systems with Reaction Maps. Interna-
tional Journal of Foundations of Computer Science, 17(1):27-48, 2006.

7. G.E. Briggs and J.B.S. Haldane. A note on the kinetics of enzyme action. Biochem.
J., 19:338-339, 1925.

8. K. A. Connors. Chemical Kinetics: The study of Reaction Rates in Solution. VCH,
1990.

9. C.V. Delen and B.H. Iglewski. Cell-to-cell signalling and Pseudomonas aeruginosa
infections. Emerging Infectious Diseases, 4(4):551-560, October-December 1998.

10. S.P. Diggle, K. Winzer, A. Lazdunski, P. Williams, and M. Cdmara. Advanc-
ing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of N-
acylhomoserine lactone production and virulence gene expression. Journal of Bac-
teriology, 184:2576—-2586, 2002.

11. J.D. Dockery and J.P. Keener. A mathematical model for quorum gensing in
Pseudomonas aeruginosa. Bulletin of Mathematical Biology, 63:95-116, 2001.

12. D.T. Gillespie. A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. Journal of Computational Physics, 22:403—
434, 1976.

214

13.

14.

15.

16.
17.
18.

19.

20.

21.

22.

23.

24.

25.

L. Bianco et al.

D.T. Gillespie. Exact stochastic simulation of coupled chemical reactions. Journal
of Computational Physics, 81(25):2340-2361, 1977.

A .M. Lazdunski, I. Ventre, and J.N. Sturgis. Regulatory circuits and communica-
tion in Gram-negative bacteria. Nature Reviews, Microbiology, 2:581-592, 2004.
G. Paun. Computing with membranes. J. Comput. System Sci., 61(1):108-143,
2000.

G. Paun. Membrane Computing. An Introduction. Springer, Berlin, 2002.

J.P. Pearson. FEarly activation of quorum sensing. Journal of Bacteriology,
184:2569-2571, 2002.

M.J. Pefez-Jimeniez and F. J. Romero-Campero. P systems — A new computa-
tional modelling tool for systems biology. Transactions in Computational Systems
Biology, 2006 (in press).

M.J. Pérez-Jiménez and F.J. Romero-Campero. Modelling Vibrio fischeri’s be-
haviour using P systems. In Systems Biology Workshop, ECAL, 2005.

D. Pescini, D. Besozzi, G. Mauri, and C. Zandron. Dynamical probabilistic P
systems. International Journal of Foundations of Computer Science, 17(1):183,
2006.

P.A. Siepman, G. Terrazas, and N. Krasnogor. Evolutionary Design for the Be-
haviour of Cellular Automaton-Based Complex Systems. In Proceedings of the
Seventh International Conference on Adapting Computing in Design and Manu-
facture.

G. Terrazas, N. Krasnogor, M. Gheorghe, F. Bernardini, S. Diggle, and M. Camara.
An environment aware P system model of quorum sensing. In S. Barry Cooper,
B. Lowe, and L. Torenvliet, editors, New Computational Paradigms. First Conf.
on Computability in Furope, CiE2005, pages 479-485, 2005.

A.U. Viretta and M. Fussenegger. Modelling the quorum sensing regulatory net-
work of human-pathogenic Pseudomonas aeruginosa. Biotechol. Prog., 20:670-678,
2004.

J.P. Ward, J.R. King, A.J. Koerber, P. Williams, J.M. Croft, and R.E. Sockett.
Mathematical modelling of quorum sensing in bacteria. Journal of Mathematics
Applied in Medicine and Biology, 18:263-292, 2001.

K. Winzer, K.R. Hardie, and P. Williams. Bacterial cell-to-cell communication:
sorry, can’t talk now — gone to lunch! Current Opinon in Microbiology, 5:216-222,
2002.

Membrane Systems with External Control

Robert Brijder!, Matteo Cavaliere??, Agustin Riscos-Ntiiez?,
Grzegorz Rozenberg!, and Dragos Sburlan*

! Leiden Institute of Advanced Computer Science (LIACS)
Universiteit Leiden, Leiden, The Netherlands
rbrijder@liacs.nl, rozenber@liacs.nl
2 Microsoft Research - University of Trento
Centre for Computational and Systems Biology, Trento, Italy
matteo.cavaliere@msr-unitn.unitn.it
3 Dept. of Computer Science and Artificial Intelligence
University of Seville, Seville, Spain
ariscosn@us.es
4 Faculty of Mathematics and Informatics
Ovidius University, Constantza, Romania
dsburlan@univ-ovidius.ro

Abstract. We consider the idea of controlling the evolution of a mem-
brane system. In particular, we investigate a model of membrane systems
using promoted rules, where a string of promoters (called the control
string) “travels” through the regions, activating the rules of the system.
This control string is present in the skin region at the beginning of the
computation — one can interpret that it has been inserted in the system
before starting the computation — and it is “consumed”, symbol by sym-
bol, while traveling through the system. In this way, the inserted string
drives the computation of the membrane system by controlling the acti-
vation of evolution rules. When the control string is entirely consumed
and no rule can be applied anymore, then the system halts — this cor-
responds to a successful computation. The number of objects present in
the output region is the result of such a computation. In this way, us-
ing a set of control strings (a control program), one generates a set of
numbers. We also consider a more restrictive definition of a successful
computation, and then study the corresponding model.

In this paper we investigate the influence of the structure of con-
trol programs on the generative power. We demonstrate that different
structures yield generative powers ranging from finite to recursively enu-
merable number sets.

In determining the way that the control string moves through the
regions, we consider two possible “strategies of traveling”, and prove
that they are similar as far as the generative power is concerned.

1 Introduction

Membrane systems (also referred to as P systems) were introduced in 1998 by
Gh. Paun as computing devices inspired by the structure and functioning of

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 215-232, 2006.
© Springer-Verlag Berlin Heidelberg 2006

216 R. Brijder et al.

living cells. Since their introduction, several models of P systems have been
investigated, many of them being proved to be computationally complete. The
reader is referred to the monograph [6], and to an up-to-date bibliography of
this research area available at the P systems web-page, [11].

In nature, the behavior of cells can be influenced by the signals (controls) that
they receive from the “outside”. Thus, it may be possible to drive the evolution
of a living cell by providing the cell with a specific control.

With this motivation in mind, we introduce and investigate a model of P sys-
tems, called string-controlled P systems (in short, SC P systems). This model is
based (with some modifications) on membrane systems with promoters, intro-
duced in [1]. There, the presence of promoters is used to activate, during the
computation, certain rules of the system. The biological motivation is the fact
that chemical reactions in living cells can be promoted (or inhibited) by the
presence of various enzymes.

A string of promoters (called the control string), “produced” by the environ-
ment, is present in the skin region of the system at the beginning of a computa-
tion. This string (that acts like an external control) travels through the regions
of the system, possibly promoting (with its leftmost symbol) the rules of the
region where it currently resides. Each time the string moves from one region
to another, its leftmost symbol (used as a promoter) gets consumed. When the
whole string is consumed, and no rule can be applied in any region, then the
system halts, completing a successful computation. The output of such compu-
tation is the number of objects present in the output region when the system
halts.

We shall also consider another sort of successful computation, which addition-
ally has to satisfy a “clean ending condition” (which requires that an a priori
specified “undesirable” object is not present in any region upon the completion
of the computation).

In this way, an SC P system generates the set of numbers composed by the
outputs of all its computations. Also, a membrane system with a collection of
control strings (called the control program) generates a set of numbers, which is
defined as the union of the sets generated for each single string.

In this paper we pay special attention to SC P systems where all evolution
rules of the system are promoted — hence, only the rules defined in the region
where the control string currently resides, and whose promoter matches the
leftmost symbol of the control string, may be active. In particular, we investigate
how the structure of the control program influences the generative power of such
systems, which are called fully-promoted SC P systems.

We show that if the control program is finite, then the generative power
corresponds exactly to the family of finite sets of numbers. On the other hand,
if the family of recursively enumerable languages is used as the control program,
then, not surprisingly, the resulting generative power corresponds to the family
of Turing computable sets of numbers. Several intermediate results are obtained
by balancing the structure of the control program and the power of the evolution
rules used by the system.

Membrane Systems with External Control 217

We consider two different ways (operating modes) for a control string to travel
through the regions of the system: either the string must move at each step (mode
(1)), or it is allowed to remain in the same region for several consecutive steps
until it decides (nondeterministically) to move again (mode (2)). We prove that,
under some natural conditions on the control program, these two modes are
similar as far as the generative power is concerned.

The paper is organized as follows. Section 2 recalls some basic notions of
formal languages theory used throughout the paper. A formal definition of SC
P systems is presented in Section 3. In Section 4 we show that the generative
power of classes of fully-promoted SC P systems with a natural condition on
the control program family are “almost” independent on the chosen operating
mode of the movement of the control string. In Section 5 we consider structures
of control that yield a generative power strictly weaker than RE, and in Section
6 structures that yield the computational completeness.

We conclude the paper by suggesting a number of open problems and research
directions.

2 Preliminaries

Let us briefly recall some notions and results of formal languages to the extent
needed in this paper — in this way we establish the basic notation and terminology
needed later on. For more details the reader can consult standard books, such
as [10], [2], and the handbook [9].

An alphabet V is a finite set of symbols. By V* we denote the set of all strings
over V, the empty string is denoted by A, and V' = V* — {\}.

The length of a string w € V* is denoted by |w|, while the number of oc-
currences of a € V in w is denoted by |w|,. For a language L C V*, the set
length(L) = {Jw| | w € L} is called the length set of L.

If FL is a family of languages then NFL is the family of length sets of
languages in F'L.

We denote by FIN, REG, CF, CS and RE the families of finite, regu-
lar, context-free, context-sensitive and recursively enumerable languages, respec-
tively. Accordingly, for instance, the family of length sets of languages in RE is
denoted by NRE (this is the family of all recursively enumerable sets of natural
numbers).

A multiset over V' is a mapping M : V — INg; assigning to each a € V a
multiplicity M (a). Commonly, multisets are represented by strings of symbols.
In this representation the order of symbols does not matter, because the number
of copies of an object in a multiset is given by the number of occurrences of
the corresponding symbol in the string. Hence, e.g., a*b®>d denotes the multiset
consisting of 4 occurrences of a, 3 occurrences of b, and one occurrence of d; the
same multiset is also represented by, e.g., da?ba®b?.

An ETOL system is a construct G = (X,T, H,w), where X is the (total)
alphabet, T C X' is the terminal alphabet, H = {hy, ha,...,hi} is a finite set
of finite substitutions (tables) over X, and w € X* is the axiom; each h; € H,

218 R. Brijder et al.

1 <4 < k, can be represented by a list of context-free productions A — z, such
that A € X and = € X* (moreover, for each symbol A of X' and each table h;,
1 < i < k, there is a production in h; with A as the left hand side). Then G
defines, for each 1 < i < k, a derivation relation =, by @ =, y iff y € h;(z).
We write x = y if © =, y for some 1 < ¢ < k. As usual, vt =* y denotes the
reflexive and transitive closure.

The language generated by G is L(G) = {z € T* | w =* z}. We denote
by ETOL the family of languages generated by ETOL systems, and by T0L the
family of languages generated by ETOL systems such that X' =T.

A regularly (context-free, respectively) controlled ETOL system, in short E(rc)
TOL system (E(cfc)TOL system, respectively), is a pair {2 = (G, L) where G =
(X, T,H,w) is an ETOL system and L is a regular (context-free, respectively)
language over H.

The language generated by {2 is

L(Q) = {Z eT* | w = Wy :>h771 w1 =>hi2 e =R, Wy = 2, hil hzm S L}

im

We denote by E(rc)T0L the family of languages generated by E(rc)TOL sys-
tems, and by E(cfc)T0L the family of languages generated by E(cfc)TOL sys-
tems.

The following known inclusions between families of languages will be used in
this paper (see, e.g., [10]):

FINCCFCFEIOLCCSCRE.
From [4] we recall the following result.
ETOL = E(rc)TOL.

Moreover, it is known that for each L € ET0OL there exists an ETOL system
G, with only 2 tables, such that L = L(G) (see, e.g., [8]).

A regularly controlled grammar with appearance checking is a tuple G =
(N, T,S,P,K,F) where N,T,S, and P are the set of nonterminals, the set of
terminals, the starting symbol and a finite set of context-free productions, re-
spectively. Each production in P has a uniquely associated label, and the set
of all these labels is denoted by lab(P). K is a regular language over lab(P)
and F C lab(P). Let V.= N UT. We say that z € V1 derives y € V* in the
appearance checking mode by application of A — w with label p (written as
r =5¢ y) if either x = 21 Azp and y = r1wxa, or A does not appear in z, p € F,
and x = y.

The language L(G), generated by G, consists of all strings w € T* such that
there is a derivation S :>gfl w1 :>gf2 wWa :>gf3 :>gfn wy, = w, for some n > 1
and DiDiy =" Piy, € K.

By rC,. we denote the family of languages generated by regularly controlled
grammars with appearance checking and erasing productions, and by rC we
denote the family of languages generated by regularly controlled grammars with
erasing productions and without appearance checking (the set F' is empty).

Membrane Systems with External Control 219

The following lemma holds (see [2]):
Lemma 1. »C,. = RE.

In what follows we assume that the reader is familiar with the membrane com-
puting area, in particular with the class of P systems with rewriting rules and
symbol-objects, and with the notions of P systems using promoters/inhibitors;
for instance as presented in [1,5,7] or in Chapter 3 of [6].

3 String-Controlled P Systems

A string-controlled P system, as informally described in Introduction, is defined
as follows.

Definition 1. A string-controlled P system (in short, SC P system) is a con-
struct
I = (V;C,P,L,/L,U)h...7U}m,R17...7Rm,Z'0)7

where:

— V is the alphabet of II; its elements are called objects;

— C CV is the set of catalysts;

— P is the set of promoters; PNV = (J;

— L C P* is the control program (each string in L is a control string);

— i is a membrane structure consisting of m membranes labeled 1,...,m;

—w;, 1 < i < m, are strings that represent the multisets over V initially
associated with the regions 1,2,...,m of u;

— R;, 1 <i < m, are finite sets of evolution rules associated with the regions
1,2,...,m of u. Each evolution rule is either of the form u — v or of the
form u — vl,, where w € Vt, p € P, and v € V. with Viqr =V x TAR,
for TAR = {here,out} U {in; | 1 <j <m};

— i9 € {1,...,m} specifies the output region of II.

As usual, the membrane structure is a hierarchical arrangement of membranes,
embedded in a skin membrane, which separates the system from the environment.
A membrane without any membrane inside is called elementary. Each membrane
defines a region. For an elementary membrane this is the space enclosed by it,
while for a non-elementary membrane, is the space in-between the membrane
and the membranes directly included in it. As usual, labels 1,...,m identify
both membranes and their corresponding regions.

Evolution rules of the form v — v|, are called promoted, and evolution rules
of the form v — v are called non-promoted. An evolution rule is called non-
cooperative if u € V. Also, an evolution rule is called catalytic if it is either of
the form ca — cv or of the form ca — cv|,, wherea € (V—-C),ce C,p € P, and
ve ((V-C)x TAR)*. The elements of TAR are called targets. It is convenient
to denote (a,t) € Viur by a if t = here, and by a; otherwise.

A configuration of II is a description of the membrane structure and of the
contents of all the regions. An initial configuration of II consists of the membrane

220 R. Brijder et al.

structure u, the objects initially present in the regions of the system, as described
by w1, ..., wn, and by one string from L, present in the skin region (this string
is called control string). Notice that IT has a set of initial configurations, one for
each element of L.

As standard, we suppose the existence of a global clock that marks the steps
of the system.

At each step, the control string moves, in a nondeterministic way, across the
regions of IT. We distinguish two possible modes of operation for IT: (1) at each
step the string moves passing from one region to an adjacent one; (2) at each
step the string may move to an adjacent region or remain in the same region.
In both cases the control string cannot move to the environment, and when it
moves from a region to another one, it loses its leftmost symbol. The leftmost
symbol of the control string is called the head.

At each step the head of the current control string is used as a promoter for
the rules present in the region where the string resides. A promoted rule is active
if its promoter is present. The rules that are not promoted are always active.

A transition between two configurations of II is obtained by applying in one
step the active rules in each region of IT in a maximally parallel nondeterministic
manner. More precisely, if a rule v — v € R; or v — v|, € R; is active and the
multiset u is present in region ¢, then the application of this rule means removing
u from region 7 and adding the objects specified by v in the regions indicated by
the corresponding target commands.

A sequence of transitions, starting from an initial configuration of I7, is called
computation. A computation halts when there is no applicable rule in any re-
gion of IT and the control string is entirely consumed (I has reached a halting
configuration).

We shall consider two definitions of successful computation for IT:

— in the standard case, we say that all halting computations of IT are successful,

— in the # case, we consider that a halting computation of I is successful if
and only if a special a priori designated symbol # € V' is not present in the
halting configuration in any region of II.

The result of a successful computation w is the number of objects present
in the output region iy in the halting configuration of w. Depending on the
definition of successful computation that is considered, we shall say that the
system collects the result in the standard way, or in the # way.

We use the notation P, («, F'L), where a € {ncoo, coo} U {caty, | k > 1} and
FL is a family of languages, to denote the class of SC P systems which use
at most m membranes, use only non-cooperative (ncoo), cooperative (coo), or
catalytic with at most k catalysts (caty) evolution rules (promoted or not), and
use a control program in F'L. We call F'L the control program family of the class.
In the coo case, there is no restriction on the form of the evolution rules. The
prefix (pro) is added if only promoted rules are used (such systems are called
fully-promoted SC P systems).

We denote by N (IT),i € {1,2}, the set of results of all successful computa-
tions of IT starting from any possible initial configuration, operating in mode (i),

Membrane Systems with External Control 221

and collecting the result in the standard way. Similarly, we denote by N;Z) (II),i €
{1, 2}, the set of results of all successful computations of IT operating in mode ()
and collecting the result in the # way. Moreover, N P, (o, FL) = {N®(IT) |
II € P (o, FL),i € {1,2}} denotes the family of sets of natural numbers gen-
erated by SC P systems from P,,(«, F'L) operating in mode (¢), ¢ = 1,2, and
collecting the result in the standard way. The family N;Z)Pm(a, FL) is similarly
defined.
The following inclusions follow directly from the definitions.

Lemma 2
p 4 m\tt =P #i m ’)
ro N(Z)P a,FL) C 0 N()P a, FL
#4 m\tt 1) = #i m\tt 2) g 1 = 2
pro N(l)P a, FL - pro N()P a, FL f FL, CFL

(pTo)]\f;éZ)Pm(ncoo7 FL)C (pTo)N;Z)Pm (cat;, FL)
- (pro)Ng)Pm(catHhFL) - (pro)N;f)Pm(coo, FL),

forj > 1,4 € {1,2}, o € {ncoo,coo} U{caty | k > 1}, and FL,FL,,FLy
families of languages.

4 Fully-Promoted SC P Systems

In this section we start the investigation of fully-promoted SC P systems. Notice
that for such systems in each time step there is activity in at most one region (the
region where the control string currently resides). First we give an example that
illustrates the functioning of an SC P system. Then we prove the equivalence
(as far as the generative power is concerned) between modes (1) and (2).

The following example shows that a given SC P system IT can produce dif-
ferent results according to its functioning mode.

Example 1. Let IT be the SC P system:

I = (‘/’ 07 P,L,M,U)l,ﬂ]Q,Rl,RQ,iO),

where:
-V= {A}a
- C=0,
- P= {aab}v
— L ={ab},

_/l:[l [2]2]17
—wlz)\;wng,

- Rl 207
- RQ = {A—>AA‘b},
— i =2.

The system collects the result in the standard way.

222 R. Brijder et al.

When IT operates in mode (1), the unique control string of L is initially
present in the skin region and moves, in the next step, to region 2, losing its
head a. Therefore, now the rule A — AA|, is activated. In the following step
the control string exits region 2, entering region 1, and then its last symbol, b,
is consumed. Therefore, there is only one successful computation and we have
NO(IT) = {2}.

If IT operates in mode (2), then the unique control string of L is initially
present in the skin region and it may remain there for a certain number of steps;
meanwhile nothing is produced in region 2. At a certain step the string moves
into region 2, losing its head a. Then, the rule A — AA|, is activated in region 2
and it will double the number of objects A at each step, until the string b moves
back to region 1. When this happens the computation halts and the number of
objects produced in region 2 is a power of two, that is, N (IT) = {2" | n > 1}.

Example 1 illustrates that for a given fully-promoted SC P system the generated
sets under operating modes (1) and (2) may differ (even drastically). However,
the family of sets of numbers generated by a class of fully-promoted SC P sys-
tems with a control program family that is closed under non-erasing regular
substitution is “almost” independent on the chosen operating mode. In fact, we
show that any fully-promoted SC P system operating in mode (2) [(1), respec-
tively] can be simulated (in a weak sense) by a fully-promoted SC P system
operating in mode (1) [(2), respectively] using the same type of rules, the same
type of control program, and using a double number of membranes.

Theorem 1. Let IT € (pro)P,, (o, FL), where m > 1, a € {ncoo, coo} U {caty |
k > 1}, and FL is closed under non-erasing reqular substitution. There exists
II' € (pro)Poy, (o, FL), such that

NPy = {z+ 1]z e NP (D)}

Proof. Let I = (V,C,P,L, pt,w1, ..., Wn,R1,...,Rmn,ig) € (pro)Pm(a,FL),
and let us construct II' = (V/,C, P, L', i/ ,wy, ..., wh,,, Ry, ..., RS, i0) €
(pro) Pam (o, F'L) as follows.

Let V! =V U{Z}, with Z ¢ V and P’ = P U {d}, with d ¢ P. We consider
the regular substitution ¢ defined by ¢(p) = p(dp)* for each p € P; we define
L' = ¢(L) (notice that the substitution is non-erasing and so every family of
languages in { REG, CF,CS, RE} is closed under this operation). The structure
i/ has 2m membranes and is obtained from p by adding, in each region 7,1 <
i < m, of p an (elementary) membrane with label m + i. Furthermore we define
w, =w; Z,for 1 <i<m,and w, =2, form+1<i<2m.

We define R, = R;U{Z — #|q},for 1 <i<m,and R, ={Z — #|, | p € P},
form+1<1i<2m.

We shall now show that for every successful computation C of II with result x
operating in mode (2) there exists a successful computation C’ of IT" with result
x + 1 operating in mode (1).

Consider an arbitrary computation of IT and consider one of its configurations.
Now, suppose that in such configuration the current control string w is in region ¢

Membrane Systems with External Control 223

of IT and has p as its head. Then, there exists a computation in IT’, starting with
an “appropriate” control string from L’ in the skin, that reaches a configuration
having the control string w’ = p(dp)™x present in region i of IT'.

Suppose now that w does not move in IT (II operates in mode (2)) but
remains in the same region for several consecutive steps. This is simulated in 1T’
by moving w’ back and forth between region i and the adjacent dummy region
m+1, consuming for each movement a symbol p and a dummy promoter d. In this
way, an arbitrary computation in IT can be simulated in II’ by a computation
starting with an appropriate control string from L’.

On the other hand, IT’ does not have other successful computations except
those simulating successful computations of IT as described above. In fact, since
there is a rule Z — #|4 in every set R., for 1 < i < m, which guarantees that the
dummy symbol d cannot be used to move the control string into non-dummy
regions, otherwise the computation would not be successful. Moreover, if the
promoter present immediately to the right of the head of the current control
string is non-dummy (i.e., the string is of type pgz, with p,q € P, and = € P*),
then the string must move in a non-dummy region, because otherwise the rules
R, ={Z — #|, | p € P}, for m+ 1 < i < 2m, would make the computation
unsuccessful, if applied. From the above discussion it should be clear that the
theorem holds. O

Conversely, a fully-promoted SC P system operating in mode (1) can be simu-
lated (in a weak sense) by a fully-promoted SC P system operating in mode (2),
using a structure having a double number of membranes.

Theorem 2. Let IT € (pro)P,, (o, FL), where m > 1, a € {ncoo, coo} U {caty |
k > 1}, and FL is closed under non-erasing morphism. There exists II' €
(pro) Py, (o, FL), such that

NPT = {z +2 |z e NY (1)}

Proof. Given Il = (V,C, P, L, pp,w1, ..., W, R, ..., Rin,i9) we construct II' =
(V',C,P', L') wi,...,wh,,,Ri,..., R, i0) as follows.

Let V! =V U{¢,¢,Z} and P = PU{d,d'}, with ¢,c', Z ¢ V, and d,d' ¢ P.
We consider the non-erasing morphism ¢ defined by ¢(p) = pdd’, for each
p € P — then we set L’ = ¢(L) (notice that every family of languages in
{FIN,REG,CF,CS, RE} is closed under non-erasing morphisms). The mem-
brane structure p’ has 2m membranes and is obtained from g in the following
way. In each region 4,1 < i < m, of u an (elementary) membrane with label
m + ¢ is added.

The initial multisets of II" are w, = cZw;, for 1 < i < m, and w} = Z, for
m+1<i<2m.

Finally, the evolution rules of II’ are defined in the following way: R, =
R,U{d — o, Z — #lat U{d — #lp,c = |p | p € P}, for 1 <i < m.
R, ={Z — #|,|pe P}, form+1<i<2m.

We will prove now that for every computation of IT operating in mode (1) and
producing z, there exists a computation of IT’ operating in mode (2) producing
T+ 2.

224 R. Brijder et al.

Consider an arbitrary computation of IT and suppose that, after a certain step
k during that computation, the control string p;, ps, - - - pi;, With piy , Py, ..., Ds; €
P, is present in region ¢ of IT.

Then, there is a computation of IT’ (starting with an “appropriate” control
string from L) such that the control string p;, dd'p;,dd’ - - - p;;dd’ is present in
region i of II' after a given step k'

In 11, at step k + 1, the string must exit region ¢ (I operates in mode (1)),
entering one of the adjacent regions, chosen nondeterministically, losing the pro-
moter p;, and getting the promoter p;, as its new head.

This single step of IT is simulated by II’ in the following consecutive steps.
The rules activated by promoter p;, present in region ¢ of II' are executed at
step k', together with the rule ¢ — ¢’ present in every region of IT’ and activated
by any promoter of P. Therefore, at step k' + 1 the control string must exit
region i, as otherwise in the next step the rule ¢ — #| p;, would be applied and
the entire computation would not be successful.

The only region of II’ where the control string can go to is the dummy region
m + 4 present inside region i (otherwise the promoter d that follows p;; would
activate the rule Z — #|; present in any of the non-dummy adjacent regions
of region i and the computation would not be successful). Therefore, suppose
the control string goes to region m + %, losing in this way the promoter p;,; the
control string may remain in region m + ¢ for an unbounded number of steps (no
rule can be applied there). At a certain step k” the control string comes back
to region %, losing the promoter d and having now the promoter d’ as its head;
therefore, in the step k” + 1 the rule ¢ — ¢|4 is applied. The control string
having now d’ as head may remain in region ¢ for an unbounded number of steps
(no rule can be applied). Eventually, the control string exits region ¢ moving to
an adjacent region, losing the promoter d’, and having the promoter p;, (the
next non-dummy promoter) as its new head.

Thus, all possible movements of the control string in IT (i.e., all possible
computations) are correctly captured by the functioning of IT’; consequently,
every successful computation of IT can be simulated by II'.

Notice that, in IT’, if the promoter adjacent to the head of the control string
is non-dummy (i.e., it belongs to the set P), then the control string must move
in a non-dummy region; otherwise a rule from R, = {Z — #|, | p € P},
m—+1 <17 < 2m, is applied and that would make the computation unsuccessful.

Therefore there are no other successful computations of II’ except those that
simulate, in the above described way, successful computations of II. Thus, the
theorem holds. O

5 The Influence of the Control Program

Now we analyze in more detail the class of fully-promoted SC P systems op-
erating in mode (1). We show how the structure of the control program and
the type of evolution rules influence the generative power of the constructed

Membrane Systems with External Control 225

membrane system. A series of results, ranging from finite power to computational
universality, is obtained.

It is worth to remark that one can easily obtain the length set of any language
L as output of an SC P system using non-cooperative rules and having L as the
control program. Hence, the structure of the control program influences the
generative power of SC P systems as the following theorem states.

Theorem 3. NFL C (pro)N™ Py(ncoo, FL).

Proof. Given an arbitrary language L over the alphabet X = {ay,...,a,}, let
us consider a symbol * ¢ X, and let L’ = h(L) where h is the morphism defined
by h(a) = *a, for every a € X.

Now let us construct an SC P system that generates length(L) as follows:

I = (‘/'7 C; P; L’,,u7w1,w2,R17R2,i0)7

where:

- V=A{d,...,a,},
- C =10,

- P=X

- ,U':[l [2]2]1a
— w1 = \ws =d,

- R1:@7
— Re={d —d,dl.]|ae X},
— 19 = 1.

At the beginning of the computation one of the strings from L’, nondeter-
ministically chosen, is present in the skin region of IT (i.e., region 1). The string
moves back and forth between region 1 and region 2 of the system, losing alter-
natively the symbol * (when passing from region 1 to region 2) and a symbol
a € X (when moving in the opposite direction). When the string is in region 2,
its head a € X' activates exactly the rule that produces and sends out the symbol
a’. Therefore, the number of symbols contained in the output region when the
computation halts (the string is entirely consumed) is equal to the number of
symbols from X' that occurred in the inserted control string. Thus II generates
exactly the length(L). O

Now, from Corollary 2, Theorem 3 and the Turing-Church thesis, we have that
the class of fully-promoted SC P systems using arbitrary RE languages as control
program is universal, even when only non-cooperative rules are used. Hence, the
following theorem holds.

Theorem 4. (pro)N™") Py(ncoo, RE) = (pro)Ng)Pg(ncoo, RE)= NRE.

It is now natural to ask what happens if we increase the “power” of the evolution
rules used by the P system and we decrease the “power” of the control program.

First we consider SC P systems that use cooperative evolution rules and finite
control programs.

226 R. Brijder et al.

Theorem 5. (pro)N4 P.(coo, FIN) = (pro)N") P.(coo, FIN) = NFIN.

Proof. Given an SC P system I1, it is sufficient to notice that the number of
distinct nondeterministic computations using only a finite number of steps is
bounded by a constant that only depends on II. Therefore, if IT has a finite
control program, then the set of numbers produced is finite. The other inclusion
follows from Theorem 3. O

Let us prove next that the class of fully-promoted SC P systems using arbitrary
context-free (regular, respectively) languages as control program generates ex-
actly the family NE(cfc)TOL (or the family NE(rc)TOL, respectively), even
with non-cooperative rules.

Theorem 6
(pro)N3 Py(ncoo, REG) 2 NE(re)T0L = NETOL.
(p?“o)Nqéél)Pg(ncoo7 CF) D> NE(¢fc)TOL.

Proof. Given 2 = (G, L) an arbitrary E(rc)TOL system (or E(cfc)TOL sys-

tem, respectively) we construct a SC P system IT in (pro)P;(ncoo, REG) (in

(pro) Py (ncoo, CF), respectively) such that N;:)(H) = length(L(S2)) as follows.

Let G = (5, T, H,w) with H = {hy,. .., hy}. Let
I = (‘/’ 07 P,L,M,U)l,ﬂ]Q,Rl,RQ,iO),

where:
-V=x
- C =0,

— P={ty,...,tg,d,p}, with d,p & {t1,...,tk},

— L' = ¢(L)dp with the morphism ¢ defined by ¢(¢;) = dt;, 1 <i <k,
- U:[l [2]2]1a

— w1 = \jwe = w,

- Ry =10,

- R={X—aly | X—>ach,1<i<k}U{N—-#|, | Ne ¥ -T},
— 49 = 2.

Now II simulates in region 2 the productions of G, applying the tables according
to the strings in L', in such a way that each table h; has an associated promoter
t;, for every 1 <i < k.

The dummy promoter d is only used to be consumed while the control string
moves from region 1 to region 2. In this way, the new head of the control string
is a symbol t;, for some 1 < i < k. The final promoter p added as last symbol of
any string in L’ is used to check whether or not there are still nonterminals in
region 2 in the last step of the computation. If this is the case, then the special
object # is produced and the computation is not successful. Consequently, the
theorem follows. O

We continue now to prove that the reverse inclusions also hold.

Membrane Systems with External Control 227

Theorem 7
(pro)N3 P, (ncoo, REG) C NE(rc)TOL = NETOL.
(pro)Ng)P*(ncoo, CF) C NE(c¢fc)TOL.
Proof. Consider a fully-promoted SC P system II of the form
II=(V,C,P,L,p,wy,...,Wn,R1,...,Rm,i0),

such that C = @ and L is a regular (context-free, respectively) language over
P ={p1,p2,..., Pk}

We consider the morphisms ¢;, 1 <i <m, defined by ¢;(X) = (X, 1), for all
X €V, 1< i< m. By using these morphisms, we associate with each occurrence
of any object X the index of the region where the occurrence resides.

We also use the morphisms ¢!, 1 <i < m, defined by

(X,4) if tar = here,
O Xpar) = ¢ (X, J) if tar = out,
(X, k) if tar = iny,

for all X € V, where j is the label of the surrounding region of .

We construct now an E(rc¢)TOL system (or an E(cfc)TOL system, respectively)
2 = (G, L') simulating the computations of IT.

First we construct G. Let G = (X,T, H,w'), where ¥ = {(X,i) | X e V,1 <
i<m}, T=X—{(#,1)|1<i<m}and w = @1(w1)- - Om(Wn).

Each table h; ., € H, 1 <i <m, 1 < j <k, is constructed in the following
way:

— for each X € V, if X — af,, € R;, for some p; € P, then the rule (X,i) —
¢! () is added to the table h;. Otherwise, if X is not present as the left hand
side of any rule in R;, then the rule (X,4) — (X,) is added to the table h;;

— for each X € V and 1 <1 < m, [# i, the rule (X,]) — (X,1) is added to
the table h;.

Notice that H has mk tables and each one of them is complete.

Finally we construct L’. To this aim we define the finite substitution ¢’ by
©'(pj) = {tip, | 1 < i <m} for each 1 < j < k. We also define the nondeter-
ministic finite state automaton A = (@, Vi, so, F,6), where Q = {0,1,...,m},
VA:{t(i’pj) |1 <i<m, 1<j <k} so=0 F=Q@Q and 6 is defined by
6(0,t1,p)) = 1, 6(i1,t(s,,p,)) = {i2 | 1 < 42 < m, and region 4; is adjacent to
region iz in p} for every 1 < j < k and 1 < i; < m. Without loss of generality,
we assume 1 to be the label of the skin membrane of IT.

Now, L' = ¢/(L) N L(A) is regular (context-free, respectively) since regular
(context-free, respectively) languages are closed under intersection with regular
languages, see e.g. [10].

The underlying idea of the proof is the following.

Each table ;) of G with 1 <1i <m,1 < j <k, simulates the rewriting in
parallel of the objects present in region i of II, by using rules activated by the

228 R. Brijder et al.

promoter p;. All the objects present in the same region that cannot be rewritten
by any active rule, as well as those present in the other regions of the system,
are left unchanged by the application of the table.

The language ¢'(L) is used to pass from one table to another, in the way
described by the strings of promoters present in the control program L. More
specifically, if the string w = pj, - --pj, is present in L, then ¢'(L) contains all
the strings of the set Sw = {t(i, p,,)- - -+ Lipy,) [1,0 € {1,...,m}}. In this
way, each computation of II starting with the control string w = pj;, - - - p;, can
be simulated in G by applying the tables following the order of an appropriate
string in S,,. On the other hand, not every string in the set S, simulates a
correct computation in II starting with the control string p;, ---pj,. In fact,
the control string in IT can only move through adjacent regions — this has to be
“encoded” in the way that the passage from one table of G to another one is done.
For this reason the appropriate regular (context-free, respectively) language L’
that controls G is obtained by intersecting the language ¢’(L) with the regular
language L(A).

From the above explanation it follows that each string in L(f2) contains pairs
(object,region) corresponding to the objects present in the halting configura-
tions of successful computations of I7. In order to get the exact contents of the
output region of IT, we apply to L({2) the morphism ¢,, defined by:

X if i =i,
A otherwise.

o6, = {

Since the family E(r¢)T0L (or the family FE(cfc)T0L, respectively) is clearly

closed under arbitrary morphisms, it follows that Ng) (IT) belongs to the family
NE(re)TOL (or to the family NE(cfc)TOL, respectively). Thus the theorem
holds. O

From Theorems 6 and 7 we obtain

Corollary 1

(pro)N) P,(ncoo, REG) = NE(rc)TOL = NETOL.
(pro)Ng)P*(ncoo, CF) = NE(cfc)TOL.

On the other hand, if SC P systems collect the result in the standard way,
then one gets the following results.
Theorem 8
(pro)N®M Py(ncoo, REG) D N(r¢)TOL = NETOL.
(pro)N Py(ncoo, CF) D N(cfe)TOL.
Proof. In the proof of Theorem 6 the special symbol # is only used to check if
any nonterminal of G is still present when the computation of IT halts. Therefore

this checking can be avoided during the simulation of a (rc)TOL system (or a
(cfc)TOL system, respectively). Hence the theorem holds. O

Membrane Systems with External Control 229

Analogously, note that in Theorem 7 the set of nonterminals used by the ETOL
system constructed in the proof contains only the special object # included in
the alphabet of the corresponding SC P system II. Therefore if I collects the
output in the standard mode (i.e., it does not use #), then one gets the following
results.

Theorem 9
(pro)NMW P, (ncoo, REG) C N(r¢)TOL = NETOL.
(pro)NM P, (ncoo, CF) C N(cfe)TOL.

Theorems 8 and 9 yield the following corollary.

Corollary 2

N(re)TOL = (pro)NW P, (ncoo, REG) = NETOL.
N(cfe)TOL = (pro)NY P, (ncoo, CF).

6 Fully-Promoted SC P Systems: Universality

If SC P systems use arbitrary regular control programs, and only one catalyst,
then they generate the family of recursively enumerable sets of natural numbers.

In [3], P systems using two catalysts and two membranes have been proved
to be universal. This proof can also be applied for non fully-promoted SC P
systems to obtain the following universality result.

Corollary 3. N Py(caty, {{\}}) = NRE.

In case of fully-promoted SC P systems, the computational universality can be
obtained using arbitrary regular control programs and catalytic rules with only
one catalyst.

Theorem 10. (pro)Ng)Pg(cathREG) = NRE.

Proof. The inclusion in NRE follows from Church-Turing thesis. The opposite
inclusion can be proved by simulating regularly controlled grammars with ap-
pearance checking, as follows.

Given a regularly controlled grammar with appearance checking G = (N,
T,S5,P,K,F), we construct IT € (pro)PQ(D(catl7 REG), collecting the output in
the # way, that simulates G. Let

I = (‘/’ 07 P/7L7,u'7 ’Ll)l,U]Q,Rl,RQ,iO),

where:

- V=NUTU/{e 7},
- C:{C}’
— P'=lab(P)u{d,d'},d,d ¢ lab(P),

230 R. Brijder et al.

— L = ¢(K)dd" with non-erasing morphism ¢ defined by ¢(p) = dp for each
p € lab(P),
- B = [[2]2]17

1
—w; = \wy = SZ¢,
- Rl 207

Ro={cA—calp|p:A—acPtU{cZ —c#|,|p¢ F}
U{Z_’Zout|d’}7
=2

We show that IT simulates the derivations of G. Note that, by definition, for every
piy - pi,, € K, we have dp;, -+ - dp;, dd’ € L. The promoters d are dummies, they
are only used to let the control string to enter and exit region 2, passing in
this way from a promoter p;; as the current head to the promotor p;,,,, for
1 < j < k — 1. The derivations of G are simulated by the execution of rules
from Rs.

Notice that, because of the catalyst ¢ that inhibits the parallelism, at most
one rule is executed in region 2 when the control string resides in that region.
If a rule cannot be applied and the label of the corresponding production is not
in F', then the computation is unsuccessful (# is produced by applying the rule
c¢Z — c#t that is activated by any promoter p € (lab(P) — F)) and this is correct
since the simulated derivation in G’ cannot be continued. On the other hand, if a
rule cannot be applied and the label of the corresponding production is in F' (so
the production has to be used in the appearance checking mode), then no rule
is applied in region 2, the control string leaves the region and the computation
continues. The last promoter d’ present for any control string in L is used to
move, at the end of the computation, the symbol Z into region 1. It should be
clear from the above description that N;(;)(H) is exactly the length set of L(G).
Thus the theorem holds. O

We conclude this section by presenting some preliminary results concerning the
class of non fully-promoted SC P systems.
By definition, it is clear that

Lemma 3
(pro)NqZ) P, (a, FL)

C N Pu(a,FL),
(pro)N®D P, (o, FL) C N

@ Py (o, FL),
for a € {ncoo, coo} U{caty, | k > 1}, FL a family of languages, and i € {1,2}.

It is easy to notice that systems from Pj(ncoo, FIN) can generate infinite sets
of numbers when operating in mode (1) and collecting the result in the standard
way. This observation and Theorem 5 yield the following result.

Theorem 11
(pro)Ny P.(a, FIN) = (pro)NW P, (o, FIN) € NV P, (o, FIN),

for a € {ncoo, coo} U {caty | k > 1}.

Membrane Systems with External Control 231

On the other hand, if one can use any RE language as the control program, then
both classes of SC P systems have the same computational power. In particular,
from Theorem 4 and Corollary 3, one gets the following result.

Theorem 12
(pro)NW P, (o, RE) = NP, (o, RE) = NRE,

for a € {ncoo, coo} U {caty | k > 1}.

7 Concluding Remarks and Open Problems

We have introduced and investigated SC P systems where the computations are
driven by control strings (present in their skin region at the beginning of com-
putations). We have mainly investigated fully-promoted SC P systems, where
all the rules are promoted (hence controlled by the control strings). Most of the
results proved in this paper concern systems operating in mode (1), although
this is just a matter of convenience, because we have proved the equivalence
between both operating modes (under some conditions).

Table 1 gives an overview of the results obtained for fully-promoted SC P
systems operating in mode (1) and collecting the result in the # way.

Table 1. Computational power of fully-promoted SC P systems operating in mode (1)
and collecting the result in the # way. Rows specify the types of evolution rules, and
the columns specify the types of control programs.

RE CF REG FIN
ncoo NRE NE(cfe)TOL NETOL NFIN
cati,i > 1 NRE NRE NRE NFIN
coo NRE NRE NRE NFIN

The results obtained for fully-promoted SC P systems operating in mode (1)
and collecting the result in the standard way are summarized in Table 2.

Table 2. Computational power for fully-promoted SC P systems operating in mode (1)
and collecting the result in the standard way. Again, rows specify the types of evolution
rules, and the columns specify the types of control programs.

RE CF REG FIN
ncoo NRE N(cfe)TOL N(r¢)TOL NFIN
cati,i > 1 NRE D N(cfc)TOL D N(re)TOL NFIN
coo NRE O N(cfe)TOL O N(r¢)TOL NFIN

Several problems, mainly concerning non fully-promoted systems, remain
open. Are non-fully promoted SC P systems more powerful than fully-promoted

232 R. Brijder et al.

SC P systems? The answer is positive for SC P systems operating in mode
(1) and having a finite control program (Theorem 11). We conjecture that the
strict inclusion also holds when the control program is regular and the result is
collected in the standard way.

Another open problem is to find a non-trivial upper bound for the generative
power of fully-promoted SC P systems operating in mode (1), collecting the
result in the standard way, and using cooperative or catalytic rules (see Table 2).
We only know that these classes of systems can generate at least the family of
length sets of languages from (r¢)T0L (if the control program is regular) and
from (efc)TOL (if the control program is context-free). We doubt that these two
classes are universal — as a matter of fact they may be incomparable with the
classical Chomsky classes.

Finally, another interesting issue to be investigated is having the control pro-
grams produced by another bio-inspired generative device (as for instance, an-
other membrane system, or a DNA-based system).

Acknowledgments

The authors are indebted to the European Research Network SegraVis for sup-
porting this research. R.B. is supported by the Netherlands Organization for
Scientific Research (NWO) project 635.100.006 “VIEWS”.

References

1. P. Bottoni, C. Martin-Vide, Gh. Paun, G. Rozenberg: Membrane Systems with
Promoters/Inhibitors. Acta Informatica, 38, 10 (2002), 695-720.

2. J. Dassow, Gh. Paun: Regulated Rewriting in Formal Language Theory. Springer-
Verlag, Berlin, 1989.

3. R. Freund, L. Kari, M. Oswald, P. Sosik: Computationally Universal P Systems
without Priorities: Two Catalysts are Sufficient. Theoretical Computer Science,
330, 2 (2005), 251-266.

4. S. Ginsburg, G. Rozenberg: TOL Schemes and Control Sets. Information and Con-
trol, 27 (1974), 109-125.

5. M. Ionescu, D. Sburlan: On P Systems with Promoters/Inhibitors. Journal of Uni-
versal Computer Science, 10, 5 (2004), 581-599.

6. Gh. Paun: Membrane Computing. An Introduction. Springer-Verlag, Berlin, 2002.

7. Gh. Paun, G. Rozenberg: A Guide to Membrane Computing. Theoretical Computer
Science, 287, 1 (2002), 73—-100.

8. G. Rozenberg, A. Salomaa: The Mathematical Theory of L Systems. Academic
Press, Inc. Orlando, FL, USA, 1980.

9. G. Rozenberg, A. Salomaa (eds.): Handbook of Formal Languages. Springer-Verlag,
Berlin, 1997.

10. A. Salomaa: Formal Languages. Academic Press, New York, 1973.
11. P systems web page: http://psystems.disco.unimib.it/

A Case Study in (Mem)Brane Computation:
Generating Squares of Natural Numbers

Nadia Busi! and Miguel A. Gutiérrez-Naranjo?

! Dipartimento di Scienze dell’Informazione - Universitd di Bologna
Mura Anteo Zamboni 7, [-40127 Bologna, Italy
busi@cs.unibo.it
2 Dpto. de Ciencias de la Computacién e Inteligencia Artificial
Universidad de Sevilla
Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
magutierQus.es

Abstract. The aim of this paper is to start an investigation and a com-
parison of the expressiveness of the two most relevant formalisms inspired
by membranes interactions, namely, P systems and Brane Calculi. We
compare the two formalisms with respect to their ability to act as gener-
ator devices. In particular, we show different ways of generating the set
£ ={n*|n > 1} in P systems and in Brane Calculi.

1 Introduction

Natural Computing studies new computational paradigms inspired from various
well known natural phenomena in physics, chemistry, and biology. It abstracts
the way in which nature computes, conceiving new computing models. There are
several fields in Natural Computing that are now well established. Among them,
we mention Genetic algorithms introduced by J. Holland [7] that is inspired by
natural evolution and selection in order to find a good solution in a large set of
feasible candidate solutions, Neural Networks introduced by W.S. McCulloch and
W. Pitts [8] which is based on the interconnections of neurons in the brain, and
DNA-based molecular computing, that was born when L. Adleman [1] published
a solution to an instance of the Hamiltonian path problem by manipulating DNA
strands in a lab.

This paper is devoted to a new field in Natural Computing. Starting from
the structure and functioning of cells as living organisms able to process and
generate information, two different branches of Natural Computing were recently
initiated: Membrane Computing and Brane Calculi.

Membrane Computing was introduced by Gh. P&un in [9]; a comprehensive
presentation® can be found at [11]. The devices of this model are called P sys-
tems. Roughly speaking, a P system consists of a membrane structure, in the
compartments of which one places multisets of objects which evolve according
to given rules in a synchronous non-deterministic maximally parallel manner.

! A layman-oriented introduction can be found in [10] and further bibliography at [14].

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 233-249, 2006.
© Springer-Verlag Berlin Heidelberg 2006

234 N. Busi and M.A. Gutiérrez-Naranjo

Brane Calculi were introduced by L. Cardelli in [4] on the assumption that
in living cells membranes are not merely containers, they are highly dynamic
and participate actively in the cell life. In this way, computation happens on the
membrane, not inside of it.

The first attempt of bridging the two research areas was made in [6] by the
fathers of the two disciplines, L. Cardelli and Gh. Paun. As they point out,
Membrane Computing and Brane Calculi have different objectives and develop
in different directions. While Membrane Computing tries to abstract computing
models, in the Turing sense, from the structure and the functioning of the cell
(...), Brane Calculi pay more attention to the fidelity to the biological reality

In that paper [6], four basic operations from Brane Calculi, namely, pino, ezo,
mate and drip, are expressed in terms on the Membrane Computing formalism
and the Turing completeness of systems which use the mate, drip operations is
shown. The Turing universality of Brane Calculi (in fact, by using only phago and
exo operations) was proved in [3]. Recently, it has been proved that P systems
with mate and drip operations and using at most five membranes during any
step of a computation are universal (see [2]). This result improves a similar one
from [6] were eleven membranes are used.

In some sense, in this paper we cross the bridge in the other way. Instead
of expressing Brane Calculi operations in terms of the Membrane Computing
formalism, we take a problem from computability, the generation of a set of
numbers, and we show how it can be handled both in Membrane Computing
and in Brane Calculi.

The paper is organized as follows: first the case study, i.e., the set £ =
{n?|n > 1} and some considerations with respect to the codifications are fixed
in the next section. In Section 3, two different Membrane Computing devices
that generate £ are shown. Inspired on the second Membrane Computing de-
sign, two Brane Calculi devices that generate £ are presented in Section 4. Some
final remarks are presented in the last section.

2 The Case Study

Computational devices can be designed in order to perform different tasks.
Among such tasks, they can be designed to solve decision problems (Ix,60x)
where Ix is a language over a finite alphabet (whose elements are called in-
stances) and fx is a total boolean function over Ix. In a more general case,
the function is not boolean and the problem consists on the computation of a
function f from Ix onto a general set S.

Another type of tasks is the generation of various sets (of numbers, vectors,
strings, etc.). Due to the nondeterminism, several different computations are
obtained and some piece of information is considered as the output. Collecting all
(acceptable) outputs, we get a set (of numbers, vectors, strings, etc.) generated
by the computation device.

A Case Study in (Mem)Brane Computation 235

In order to fix ideas, let us consider the case study used in this paper. We
will consider the set {n?|n > 1}. For its generation, we will design appropriate
devices in the computational models Membrane Computing and Brane Calculi.
Such devices are non-deterministic and several computations can be performed
from the starting point. In each device, a piece of information will be considered
the output of the system. In the case of Membrane Computing, the output is cod-
ified as the number of objects inside a fixed membrane in a halting configuration.
In the Brane Calculi device, the output is codified as the number of membranes
of a specific kind that are present in the system in a halting computation. The
set of all possible outputs of the device is exactly £ = {n?|n > 1}. In this way,
L is the set generated by the device.

3 Membrane Computing

In Membrane Computing, many different types of rules and different semantics
have been presented. The choice of these rules and semantics lead us to different
models of P systems. In this section we present two P systems constructed in
two different models that generate the set {n?|n > 1}.

In these examples several types of rules are used (O is the alphabet of objects,
H is a finite set of labels, and A is the empty string):

— Object evolution rules [a — v], where h € H, a € O, and v is a string over
O describing a multiset of objects. They are associated with membranes and
depending only on the label of the membrane. Using such a rule means that
an object a evolves to the multiset v inside the membrane with label h.

— Cooperation rules: [v — w|, where h € H and v, w are string over O describ-
ing a multisets of objects. This rule is similar to the previous one, but in
this type, the rule is triggered by a multiset of objects whereas in an object
evolution rule only one object is necessary for triggering it.

— Dissolution rules: [a], — b where h € H, a € O, b € O U {\}. The object
a inside the membrane labeled with A produces the dissolution of the mem-
brane and it is transformed into the object b. This object b together with
the remaining objects in the membrane h are placed inside the surrounding
membrane.

— Send-in communication rules: o[|, — [b], where h € H, a,b € O. An
object a out of the membrane labeled with h is sent into the membrane and
transformed into b.

— Send-out communication rules: [a]y, — []n b where h € H, a,b € O. This is
dual to the previous case. An object a inside the membrane labeled with h
is sent out of the membrane and transformed into b.

Rules are applied according to the following principles:

— Rules are used as usual in the framework of Membrane Computing, that
is, in a maximally parallel way. In one step, each object in a membrane
can only be used for one rule (non-deterministically chosen when there are

236 N. Busi and M.A. Gutiérrez-Naranjo

several possibilities), but any object which can evolve by a rule of any form
must do it (with the restrictions indicated below).

— If a membrane is dissolved, its content (multiset and internal membranes)
becomes part of the immediately external one. The skin membrane is never
dissolved.

— All the elements which are not involved in any of the operations to be applied
remain unchanged.

— Several rules can be applied to different objects in the same membrane si-
multaneously. The exception are the division rules since a membrane can be
dissolved only once.

In order to generate a set, an output membrane is fixed and the number of
objects in it is counted when the system halts. The number of objects can vary
from one computation to other due to the nondeterminism of the system. In the
next examples, the set of numbers obtained in the output membrane, i.e., the
generated set, is {n?|n > 1}.

3.1 Cooperation and Priorities

The first P system that we show is taken from [11] (p. 75) and it uses two
of the most powerful features in P systems. The first one is the use of rules
with cooperation between objects as described above. This type of rules are not
triggered by the occurrence of only one object, but two or more objects are
necessary in order to trigger the rule. The second feature is the priority among
rules. In the general framework of Membrane Computing, if two rules can be
applied, one of them is chosen in a non-deterministic way. If a priority between
rules is added, we decrease the non-determinism, since we have a precedence
between them.

With the notation fixed above, the P system is IT = (O, H, p, w1, we, w3, 1, R)
where O = {a,b,d, e, f} is the set of objects, H = {1,2,3} is the set of labels,
= [[[]s]2]1 is the membrane structure, w; = 0, we = 0, ws = af are the
multisets placed in the membranes at the starting point, 1 is the label of the
output membrane, and R is the set of rules:

Rule 1: [a — ab]s Rule 5: [b — d]s
Rule 2: [a]; — b Rule 6: [d — de]o
Rule 3: [f — ff]s Rule 7: [ff — fl2
Rule 4: [d]; — d[]; Rule 8: [f]2 — A

with the priority
(Rule 7: [ff — f]2) > (Rule 8: [f]a —)

Rules 1, 3, 5 and 6 are object evolution rules. Rule 7 is a cooperation rule: we
need two objects f in order to trigger the rule. Rules 2 and 8 are dissolution
rules. Finally, rule 4 is a send-out communication rule.

A Case Study in (Mem)Brane Computation 237

The computation is performed as follows. In the initial configuration we only
have objects af in the membrane labeled with 3.

Co=1[[lafls]2]

Due to rule 3, the object f deterministically evolves to f f. For the object a we
have two possibilities: By application of rule 1, the object a evolves to ab or by
applying rule 2, membrane 3 dissolves. If we iterate the use of rules 1 and 3,
after n steps, n > 0, we get n occurrences of b, one copy of a, and 2" occurrences
of f in membrane 3.
Cr = [[[abf?]3]2]x
Co = [[[ab®f*]3]2]1

C = [[[ab™ " J3)2 s

If then rule 2 is chosen, the membrane labeled with 3 is dissolved after the
evolution of f. With the dissolution, the 2"*! copies of object f and the n + 1
copies of b become occurrences of objects of membrane 2.

Crsr = [1)y

In one step, the n + 1 copies of b are transformed into n + 1 copies of d by rule
5, while the number of occurrences of f is halved.

Cpiz =[[d"1 2" o]0

In the next step each occurrence of d introduces one occurrence of e and the
number of occurrences of f is halved again.

Cryz = | [dnH@anQn_l l2 |1

After n applications of rule 7, [ff — f]2, only one copy of object f is present
in membrane labeled with 2. In the meantime, rule 6 is applied n + 1 times in
each step.

Croa = [[dP 12+ 2 o]y
Crgs = [[d 10D 277,y

Following the priority relation, rule 7 [ff — f]2 is used as much as possible;
when only one object f remains, rule 8 is used.

Consa = [[d"Fren" T fo]

02n+3 _ [dn+le(n+1)2]1

With the dissolution of membrane 2, all the objects d become objects of mem-
brane 1. In the next step, rule 4 is applied n + 1 times and all copies of d are
sent out to the environment.

02n+4 — [e(n+1)2]1 dn+1

238 N. Busi and M.A. Gutiérrez-Naranjo

No further step is possible and the computation stops. In the membrane la-
beled with 1 we have (n+ 1)(n + 1) copies of object e for some n > 0, hence the
set generated is {n? | n > 1}.

3.2 A Simplified Solution

Now we present a new solution to the same problem. We do not use cooperation
or priorities. Only send-in communication, dissolution and object evolution rules
are applied. The design is based on the well-known property of natural numbers

n

> @k+1)=(n+1)* foralln>0
k=0

The P system is the following: IT = (O, H, p, we, w,., ws, 7, R) with the set of
objects O = {a,b,c,z}, the set of labels H = {e,r, s}, the membrane structure
t=1[[]e[]r]s- The initial multisets are w, = a®bz, w, =) and w, = 0, i.e., the
membranes s and r are empty and there exist two copies of a and one copy of b
and z in the membrane e. The output membrane is labeled with r and the set of
rules R is the following:

Rule 1: [a — ab]. Rule 5: [a —
Rule 2: [b — bc]. Rule 6: [b—
Rule 3: [z—>z] Rule 7: ¢]
Rule 4: [2]. —

Note that the only non-determinism in this example is produced by the object
z. This object can trigger two rules. The first one is [z — z]. which represents
that the object z inside the membrane e does not change. The second one is
[2]e — A which means that the object z dissolves the membrane e. The collateral
effect of the application of this rule is that the remaining objects in e are sent
to s.

The initial configuration is Cy = [[a?bz].[]-]s- In the first step the two
objects a evolve according to the rule 1, [a — ab]., and the object b evolves
following the rule 2, [b — be].. These evolutions are deterministic. For the object
z we have two options, rules 3 and 4. Let us suppose that z remains unchanged

Als
A}s

- [C]r

following rule 3, [z — z].. We obtain the configuration C; = [[a?b?cz] [],]s-
Let us suppose that in the next steps the object z does not dissolve the membrane
e. We obtain Cy = [[a?b°c*2]. |]+]s, C5 = [[a®b7c%2]c []]ss- - - and in general,

if the element z does not dissolves the membrane e, in the n-th (n > 1) step we
reach the configuration

C = [[a2* e 2 (],]

Let us now suppose that in the n-th step the object z dissolves the membrane
e by using rule 4. Since the dissolution is considered after the evolution of objects
a and b, we reach the configuration

Crgr = [0 TOFOF 170 0> 0

A Case Study in (Mem)Brane Computation 239

One of the effects of the dissolution is that the objects a, b, and ¢ are now in
the membrane s. On one hand the rules [a — A]s and [b — \]; are triggered in
the next step, so objects a and b disappear. On the other hand, objects ¢ are in
the region surrounding the membrane r, so the communication rule ¢|[|, — [¢],
are applied and all the elements ¢ go into membrane r. In this way, the next
configuration is Cpo = [[V],], with n > 0.

No more rules can be applied, so this is a halting configuration and we have
computed the number n? with n > 1 (encoded by the elements ¢) in the output
membrane.

4 Brane Calculi

In this section we tackle the problem of generating the set {n?|n > 1} in Brane
Calculi.

Brane Calculi [4] are a family of process calculi proposed for modeling the
behavior of biological membranes. In a process algebraic setting, Brane Calculi
represent an evolution of BioAmbients [12], a variant of Mobile Ambients [5]
based on a set of biologically inspired primitives of interaction. The main novelty
of Brane calculi consists in the fact that the active entities reside on membranes,
and not inside membranes.

In this paper we are interested in the membrane operations of two basic in-
stances of Brane calculi proposed in [4]: the Phago/Exo/Pino (PEP) and the
Mate/Bud/Drip (MBD) calculi.

The interaction primitives of PEP are inspired by endocytosis (the process
of incorporating external material into a cell by engulfing it with the cell mem-
brane) and ezocytosis (the reverse process). A relevant feature of such primitives
is bitonality, a property ensuring that there will never be a mixing of what is in-
side a membrane with what is outside, although external entities can be brought
inside if safely wrapped by another membrane. As endocytosis can engulf an ar-
bitrary number of membranes, it turns out to be a rather uncontrollable process.
Hence, it is replaced by two simpler operations: phagocytosis, that is engulfing
of just one external membrane, and pinocytosis, that is engulfing zero external
membranes.

The primitives of MBD are inspired by membrane fusion (mate) and fission
(mito). Because membrane fission is an uncontrollable process that can split
a membrane at an arbitrary place, it is replaced by two simpler operations:
budding, that is splitting off one internal membrane, and dripping, that consists
in splitting off zero internal membranes. An encoding of the MBD primitives in
PEP is provided in [4].

4.1 Basic Brane Calculi: Syntax and Semantics

In this section we recall the syntax and the semantics of Brane Calculi [4].
A system consists of nested membranes, and a process is associated to each
membrane.

240 N. Busi and M.A. Gutiérrez-Naranjo

Definition 1. The set of systems is defined by the following grammar:

P,Q == o|PoQ]|!P|a(P)

The set of membrane processes is defined by the following grammar:

o7 = 0|or|lo]|aoc

Variables a,b range over actions that will be detailed later.

The term ¢ represents the empty system; the parallel composition operator on
systems is o. The replication operator ! denotes the parallel composition of an
unbounded number of instances of a system. The term o(P|) denotes the mem-
brane that performs process ¢ and contains system P.

The term 0 denotes the empty process, whereas | is the parallel composition of
processes; with !o we denote the parallel composition of an unbounded number
of instances of process o. Term a.c is a guarded process: after performing the
action a, the process behaves as o.

We adopt the following abbreviations: with a we denote a.0, with (P) we
denote 0(P, and with o() we denote o(<).

The structural congruence relation on systems and processes is defined as
follows:2

Definition 2. The structural congruence = is the least congruence relation sat-
isfying the following axioms:

PoQ=QoP oclr=T1]o0o
Po(QoR)=(Po@oR ol(r|p=(0|7]p
Poo=P ocl0=0o

lo=o 100=0

(P oQ)=!Pol@Q o |7)=lo | !IT
np=\p No =lo

Po!P =P ollo=lo

0(e) =0

Definition 3. The basic reaction rules are the following:

P — P —
(par) Q (brane) Q
PoR — QoR o(P) — a(Q)
P=P P —-Q Q=@
(strucong)
P/ N Q/

2 With abuse of notation we use = to denote both structural congruence on systems
and structural congruence on processes.

A Case Study in (Mem)Brane Computation 241

Rules (par) and (brane) are the contextual rules that permit to a system to
execute also if it is in parallel with another process or if it is inside a membrane,
respectively. Rule (strucong) ensures that two structurally congruent systems
have the same reactions.

With —* we denote the reflexive and transitive closure of a relation —.

We say that a system P is deterministic iff for all P, P”: if P — P’ and
P — P” then P’ = P”. We say that P has a halting computation (or a deadlock)
if there exists @ such that P —* @ and @ .

The system P’ is a derivative of the system P if P —* P’; the set of derivatives
of a system P is denoted by Deriv(P).

The Phago/Exo/Pino Calculus (PEP). The PEP calculus is inspired by
endocytosis/exocytosis. Endocytosis is the process of incorporating external ma-
terial into a cell by “engulfing” it with the cell membrane, while exocytosis is the
reverse process. As endocytosis can engulf an arbitrary amount of material, giv-
ing rise to an uncontrollable process, in [4] two more basic operations are used:
phagocytosis, engulfing just one external membrane, and pinocytosis, engulfing
zero external membranes.

Definition 4. Let Name be a denumerable set of ambient names, ranged over
by n,m,.... The set of actions of PEP is defined by the following grammar:

a = O | O5(0) |V | Of | ©(0)

Action ¥, denotes phagocytosis; the co-action O, is meant to synchronize with
Yp; names n are used to pair-up related actions and co-actions. The co-phago
action is equipped with a process o, this process will be associated to the new
membrane that engulfs the external membrane. Action O, denotes exocytosis,
and synchronizes with the co-action ;. Exocytosis causes an irreversible mixing
of membranes. Action ©) denotes pinocytosis. The pino action is equipped with
a process o: this process will be associated to the new membrane, that is created
inside the membrane performing the pino action.

Definition 5. The reaction relation for PEP is the least relation containing the
following axioms, and satisfying the rules in Definition 3:

(phago) On.olog(P) o Oy (p).7[10(Q) — Tlro(plofoo(P)) o Q)
(exo0) Ot 7|10(On.0log(P) o Q) — P o alog||m0(Q)
(pino) @(p)-aloo(P) — aloo(p() o P)

The Mate/Bud/Drip Calculus (MBD). The MBD calculus is inspired by
membrane fusion and splitting. To make membrane splitting more controllable,
in [4] two more basic operations are used: budding, consisting in splitting off
one internal membrane, and dripping, consisting in splitting off zero internal
membranes. Membrane fusion, or merging, is called mating.

242 N. Busi and M.A. Gutiérrez-Naranjo

Definition 6. The set of actions of MBD is defined by the following grammar:
a = mate, | mate, | bud, | bud,(c) | drip(c)

Actions mate, and mate;; will synchronize to obtain membrane fusion. Action
bud, permits to split one internal membrane, and synchronizes with the co-
action bud:. Action drip permits to split off zero internal membranes. Actions
bud" and drip are equipped with a process o, that will be associated to the new
membrane created by the membrane performing the action.

Definition 7. The reaction relation for MBD is the least relation containing
the following axioms, and satisfying the rules in Definition 3:

(mate) mate,.olog(P) o mate:.7|mo(Q) — oloo|T|T0(P o Q)
(bud) bud, (p).7|70(budn.cloo(P) 0 Q) — ploloo(P)) o 7lro(Q)
(drip) drip(p).cloo(P) — p() o aloo(P)

In [4] it is shown that the operations of mating, budding and dripping can be
encoded in PEP.

For the sake of simplicity, in the present paper we consider a basic calculus
containing the membrane interaction primitives of both the PEP and the MBD
calculi. As the primitives of MBD can be encoded in PEP, we conjecture that
the system described in the following part of the paper can be encoded in an
equivalent system that makes use of the PEP primitives only.

4.2 Computing {n? | n > 1} in Brane Calculi

Now we show how to model our case study in Brane Calculi. Our solution is in-
spired by the simplified solution in Subsection 3.2. When moving from P systems
to Brane Calculi, two main problems arise.

The first problem is concerned with the fact that in Basic Brane Calculi
there are no objects/proteins floating inside the membranes. Hence, we need an
alternative representation of the output of our system. In the solution based on
P systems presented in Subsection 3.2, the natural number n is represented as
n occurrences of object ¢ inside membrane r. Here the idea is to represent the
output as a family of membranes with a particular process C' on them, such that
process C' can be distinguished by other processes residing on other auxiliary
membranes.

A second major problem is concerned with the interleaving semantics of Brane
Calculi. We note that the maximal parallelism semantics of P systems is a very
powerful synchronization mechanism. This ensures that — at each computational
step — for each occurrence of object b a new object ¢ is created and for each
occurrence of object a a new object b is created. If we simply encode each object a
(resp. b, ¢) with a membrane A(|) (resp. B(), C(), thus obtaining a flat multiset
of membranes, then for mimicking a computational step of the corresponding P

A Case Study in (Mem)Brane Computation 243

system we need to perform a synchronization among an unbounded number of
membranes, and this seems to be a very difficult task in Brane Calculi. On the
other hand, it is quite easy to synchronize an a priori fixed number of membranes.
To solve this problem, we decided to move from the flat structure of membranes
proposed above (and consisting in a multiset of membranes A(|, B(), and
C() contained in the same surrounding membrane) to a hierarchical structure.

We start presenting a simplified version of the solution, where the output of
the system is represented by the number of occurrences of C' appearing in the
whole structure of the system, and not inside a specific membrane. Then, we
present a more elegant solution where the output of the system is represented
by the number of occurrences of C' contained in a specific membrane.

Solution with output scattered in the whole system. The initial system
consists of an external membrane, containing two instances of membranes repre-
senting an encoding of object a and one brane representing an encoding of object
b, as depicted in Figure 1 (the need for the auxiliary membranes decorated with
processes X, Ta and Tb will be clarified in the following).

Ext

A A B X

M Ta Tb Ta Tb 'D
Q GDNED) o O :

Fig. 1. The initial membrane system (with M = mate;)

We mimic a single maximal parallelism computational step of the P system
in Subsection 3.2 by the following sequence of steps: each membrane encoding
object b creates — by dripping — a new membrane representing an encoding of ¢;
each membrane encoding object a is surrounded by a newly created membrane
representing a and containing a new instance of a membrane representing b.

An evolution of the representation of an object a as a nested family of mem-
branes is reported in Figure 2.

The representations of objects a and b are arranged in a hierarchical structure:
there exists a membrane with process A (and representing object a) surrounding
both a membrane with process B (representing object b) and another membrane
with process A’ (surrounded by another membrane with process E — such a
membrane is created during the phagocytosis to preserve bitonality and cannot
be avoided). The membrane with object A’ contains a membrane decorated
with B and another membrane E containing a membrane A’, and so on. The
most internal instance of membrane decorated with A’ contains the two terminal
membranes T'a and T'b.

A maximal parallelism computational step of the P system in Subsection 3.2
is mimicked in the following way: the external membrane — with process Ext —

244

N. Busi and M.A. Gutiérrez-Naranjo

Fig. 2. The evolution of the system encoding object a

sends one (asynchronous) signal to each of its children. The child membrane with
process B reacts to the signal by spawning a new child membrane with process
C, and sends a signal to the external brane to communicate that it has finished
its task. Each child membrane with process A reacts in the following way:

first of all, the A membrane sends two signals to its children — decorated with
B and F — that will be used to wake up the instances of membranes decorated
with B inside the hierarchical structure (each of such B membranes will
spawn a new C' membrane);

then it waits for two signals from its children, to acknowledge the end of
the creation of new copies of C' by the B membranes in the hierarchical
structure;

now, a new membrane is created, and the A membrane enters this new
membrane by phagocytosis and spawns a new membrane with process B;
finally, the A membrane sends a signal to the external membrane to acknowl-
edge the end of its task, and evolves to a membrane with process A’.

Before presenting the definition of the system, we show how to obtain asyn-
chronous communication between a father and a child membrane. If the father
membrane wants to send a signal to one of its children, it produces by pinocyto-
sis a bubble with process mate,; the child accepts this signal by performing an
action mate,. On the other hand, if a child wants to send a signal to its father,
it produces by dripping a bubble with process O, ; the father receives this signal
by performing an action .

Formally, the system is defined as follows:

matey(o Ext(A(Ta() o Th())
A(Ta() o To())
B)o
X))

[¢]
[¢]

So, we have a big membrane containing two copies of A and one copy of B,
plus the membrane mate,;(). The membrane mate,;(| is a trigger that fuses
with the big membrane: if the fusion is performed by the first mate, action of

A Case Study in (Mem)Brane Computation 245

Ext, then some new copies of C are produced; otherwise, the system ends. As
we already said before, the output of the system is represented by the number of
occurrences of C' appearing in the whole structure of the system, and not inside
a specific membrane.

The process Ext is the following;:

Ext = !mate,. ©(mateg,). ©(matey,). mate;,)., , Dy, .
Oy, -drip(matey;) |
mate,.0

The program Ext triggers the two copies of A and B by producing three
bubbles by pinocytosis that can fuse with the two instances of A and with B.
The membrane B simply produces a child bubble labeled with C' then signals
the termination of this task to the external membrane. In this simplified version
of the solution, C' may be any process that can be distinguished from the others.

The evolution of membrane A is depicted in Figure 2; here we give a more
detailed description of the behavior of such a kind of membrane.

First of all, the membrane A sends a signal to its children: at the beginning,
this membrane has two dummy children (represented by systems T'a and T'b) that
simply send back the signal; however, during the computation the last created
membrane A has to send a signal to its children to permit to its descendants
of kind B to produce new copies of C. Thus, membrane A sends a signal with
label as to its child with process E and a signal with label b, to its child with
process B to trigger the starting of the execution of a computational step by
the two children. Then, the membrane A waits for two signals: a signal with
label ay from its child £ (meaning that all the B descendants have spawn a
new copy of C') and a signal with label by from its child B (meaning that B has
spawn a new copy of C). After the membrane A has received these two signals
from its children, membrane A creates a new sibling bubble decorated with D,
then A enters the D bubble (note that phagocytosis creates a new membrane
surrounding A inside D; this causes the necessity to propagate signals across this
membrane, that has process E). After A enters D, D creates a child with process
B by pinocytosis, and then signals that it has finished its task to its father, and
then, by fusing with a copy of an X membrane, it becomes a membrane with
program A.

The definitions of the remaining systems and processes are as follows:

= mateq, . ©(matey,). ©matey,). g, Dy .drip(D).Da. A’
= Imateq,. Qmate,,). Amate;).y Dy .drip(Va;)
=4 (E). QB).drip(Dq,). mate;

= mate,. A

= Imate,, . ©(mate;).y, .drip(Da,)

= Imatey,. ©(C).drip(Oy,)

Ta = (!mate,,.drip(Da,))

Tb = (!matey,.drip(Oy,))

SECESECIEN

246 N. Busi and M.A. Gutiérrez-Naranjo

Solution with output contained in a specific membrane. Now we show
how to put the encoding of the output of the system inside a single membrane,
with process Res. First of all, we surround the system by two membranes: the
external membrane is decorated with process Extl and the internal membrane
is decorated with process Ext2. The initial state of the system is reported in
Figure 3.

Extl

Ext2
Res
A A B X
M
Ta Tp Ta Tb [} '{ }
C] o O O D :

Fig. 3. The initial configuration of the system with output in the Res membrane (with
M = mate;;)

The system behaves as the system presented in the previous subsection as
far as the generation of new copies of C is concerned. On the other hand, when
we decide to terminate (by choosing the second mate, action) then, instead
of blocking the system, the continuation of process Fxt2 (together with system
'Y()) permits to the nested membranes A,A’” and B to perform an exocytosis. In
this way, all the C' membranes (as well as the terminating T'a and T'b membranes)
are put in the region of the external membrane. The Ext2 membrane, as well
as the £ membranes, disappear by performing an exocytosis with the external
membrane, whereas each C' membrane produces a child decorated with C’ by
pinocytosis, and then fuses with the Res membrane.

When the computation stops, the result is represented by the number of C’
membranes contained inside the Res membrane, and the structure of the system
is depicted in Figure 4.

Formally, the system is defined as follows:

Extl(mate:(o Ext2(

Res(|))

A Case Study in (Mem)Brane Computation 247

Extl’

Res

Fig. 4. The final configuration of the system with output in the Res membrane

The processes Fxtl and Ext2 are defined as follows:

Extl =10%,
Ext2 = Imate,. ©(mate,,). (mate,).pino(mate;,)., ;-
Oy, -drip(mate;;) |
matey, .'Q)aie .'Q)aie .'Q);C Dout

The definitions of the remaining systems and processes are as follows:

= mateq,. ©(mate;,). ©(mate,,).y, Dy, .drip(D).Dq. A" | Oa,
" =lmate,,. @(mate,,). Qmatey,)., Iy .drip(Va;) | Va,
=5 (E). QB).drip(Dq,). mate;
= mate,. A
= matey. D, Iy D,
= Imate,,. @(mate,)., .drip(Da,) | mate,
= Imatey,. ©(C).drip(Dy,) | O,
a = (Imateq,.drip(Da,)) | Dout
Tb = (Imatey,.drip(Ds,)) | Dout
Res = mate;,

TES

C = ©C).materes

A
A

SHGEEE

S

5 Final Remarks

In the last years, two branches of Natural Computing, Membrane Computing
and Brane Calculi have been developed at the crossroads of Cell Biology and
Computation. Both branches start from the idea of cells are capable to process
and to generate information. Nonetheless, they have followed different paths.

248 N. Busi and M.A. Gutiérrez-Naranjo

Membrane Computing are more interested in the study of computational de-
vices, by taking the cell as inspiration whereas Brane Calculi try to stay as close
to the Biology as possible.

In a certain sense, Brane Calculi are dual to Membrane Computing, since they
work with object placed on membranes, not with object placed in the regions
surrounded by membranes. This is a key difference. In Membrane Computing,
the objects represent chemicals swimming in an aqueous solution inside the mem-
branes and membranes separate the compartments where local rules are applied.
In Brane Calculi, objects are placed on membranes and they correspond to pro-
teins embedded in the real membranes. The computation is made by membrane
operations controlled by these objects.

Another notable difference between Brane Calculi and P systems is concerned
with the semantics of the two formalism: whereas Brane Calculi are usually
equipped with an interleaving, sequential semantics (each computational step
consists of the execution of a single instruction), the usual semantics in mem-
brane computing is based on maximal parallelism (a computational step is com-
posed of a maximal set of independent interactions).

In this paper we started a joint investigation of both formalisms inspired by
the behavior of biological membranes. In particular, we investigate their compu-
tational power w.r.t. their ability to generate sets of numbers, and we take as a
case study the set £ = {n?|n > 1}.

First we recalled the P systems presented in [11] which generates £, then we
provided a new, simplified solution. Then we move to Brane Calculi, and we
tackle the problem of presenting a solution to the case study based on the sim-
plified solution we propose for P systems. After discussing the problems which
arise when moving from P systems to Brane Calculi, we present two solutions
of the problem in Brane Calculi. The most relevant problem is due to the shift
from the maximal parallelism semantics of P systems to the interleaving seman-
tics of Brane Calculi: while maximal parallelism turns out to be a very powerful
synchronization tool, permitting to synchronize an unbounded number of com-
ponents, it seems that this form of synchronization turns out to be problematic
in Brane Calculi. We solve this problem by moving from a “flat” representation
of the system to a hierarchical representation, that can be easily obtained by
making use of an unbounded number of membranes.

We think that the present paper could represent a first step in the comparison
of the two aforementioned formalisms. As future work, we plan to investigate the
possibility to compute NP-complete problems in polynomial time with Brane
Calculi, by taking as a starting point the encouraging results on this topic ob-
tained for P systems (see, for example, [13] and references therein).

Acknowledgement

The second author acknowledges the support by Project TIN2005-09345-C03-01
of the Ministry of Education and Science of Spain, cofinanced by FEDER funds,
and by the Project of Excellence TIC-581 of the Junta de Andalucia.

A Case Study in (Mem)Brane Computation 249

References

1.

2.

10.

11.

12.

13.

14.

L.M. Adleman. Molecular computations of solutions to combinatorial problems.
Science, 226 (1994), 1021-1024.

D. Besozzi, N. Busi, G. Franco, R. Freund, Gh. Paun. Two universality results for
(mem)brane systems. In Proceedings of the Fourth Brainstorming Week on Mem-
brane Computing, Vol. I (M.A. Gutiérrez Naranjo, Gh. Pdun, A. Riscos-Nufez,
F.J. Romero-Campero, eds.), Fénix Editora, 2006, 49-62.

. N. Busi, R. Gorrieri. On the computation power of brane calculi. Third Workshop

on Computational Methods in Systems Biology, Edinburgh, 2005.

. L. Cardelli. Brane calculi. In Computational Methods in Systems Biology 2004 (V.

Danos, V. Schachter, eds.), LNBI 3082, Springer-Verlag, Berlin, 2005, 257-278.

. L. Cardelli and A.D. Gordon. Mobile ambients. Theoretical Computer Science, 240,

1 (2000), 177-213.

. L. Cardelli, Gh.Pdun. An universality result for a (mem)brane calculus based on

mate/drip operations. Intern. J. Found. Computer Sci., 17, 1 (2006), 49-68.

. J.H. Holland. Adaptation in Natural and Artificial Systems. Ann Arbor, MI: Uni-

versity of Michigan Press, 1975.

. W.S. McCulloch, W. Pitts. A logical calculus of the ideas immanent in nervous

activity. Bulletin of Mathematical Biophysics, 5 (1943) 115-133.

. Gh. Paun. Computing with membranes. Journal of Computer and System Sciences,

61, 1 (2000), 108-143.

Gh. Paun, M.J. Pérez-Jiménez. Recent computing models inspired from biology:
DNA and membrane computing. Theoria, 18 (2003), 72-84.

Gh. Paun. Membrane Computing — An Introduction Springer-Verlag, Berlin, 2002.
A. Regev, E. M. Panina, W. Silverman, L. Cardelli, E. Shapiro. BioAmbients:
An abstraction for biological compartments. Theoretical Computer Science, 325, 1
(2004), 141-167.

A. Riscos-Nunez. Cellular Programming: Efficient Resolution of Numerical NP-
Complete Problems. Ph.D. Thesis. University of Seville, 2004.

P systems web page http://psystems.disco.unimib.it/

Computing with Genetic Gates, Proteins,
and Membranes

Nadia Busi! and Claudio Zandron?

! Dipartimento di Scienze dell’'Informazione, Universita di Bologna
Mura A. Zamboni 7, 1-40127 Bologna, Italy
busi@cs.unibo.it
2 Dipartimento di Informatica, Sistemistica e Comunicazione
Universita di Milano-Bicocca
via Bicocca degli Arcimboldi 8, I-20126, Milano, Italy
zandron@disco.unimib.it

Abstract. We introduce Genetic P systems, a class of P systems with
evolution rules inspired by the functioning of the genes.

The creation of new objects — representing proteins — is driven by
genetic gates: a new object is produced when all the activator objects
are present, and no inhibitor object is available. Activator objects are not
consumed by the application of such an evolution rule. Objects disappear
because of degradation: each object is equipped with a lifetime; when
such a lifetime expires, the object decays.

Then, we extend the basic model with bind and release rules and
repressor rules, that simulate the action of protein channels and the
action of substances which connect to other objects to block their use.
We provide a universality result for such a class of systems.

1 Introduction

Membrane computing is a branch of natural computing, initiated by Gheorghe
Paun with the definition of P systems in [3,4,5]. The aim is to provide a formal
modeling of the structure and the functioning of the cell, making use especially
of automata, languages, and complexity theoretic tools.

Membrane systems (also called P systems) are based upon the notion of mem-
brane structure, which is a structure composed by several cell-membranes, hi-
erarchically embedded in a main membrane called the skin membrane. A plane
representation of a membrane structure can be given by means of a Venn di-
agram, without intersected sets and with a unique superset. The membranes
delimit regions and we associate with each region a set of objects, described by
some symbols over an alphabet, and a set of evolution rules.

In the basic variant, the objects evolve according to the evolution rules, which
can modify the objects to obtain new objects and send them outside the mem-
brane or to an inner membrane. The evolution rules are applied in a maximally
parallel manner: at each step, all the objects which can evolve should evolve.

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 250-265, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Computing with Genetic Gates, Proteins, and Membranes 251

A computation device is obtained: we start from an initial configuration, with
a certain number of objects in certain membranes, and we let the system evolve.
If a computation halts, that is no further evolution rule can be applied, the re-
sult of the computation is defined to be the number of objects in a specified
membrane (or expelled through the skin membrane). If a computation never
halts (i.e., one or more object can be rewritten forever), then it provides no
output.

An up-to-date bibliography of the area and other useful resources can be found
at [9].

The goal of this paper is to introduce systems which mimic the functioning of
the genes. The relevance of such a subject has been recently pointed out in [6].
Genetic gates work in the following way: the production of a substance is the
result of the activation of a gene, when certain substances (activators) are present
while other substances (inhibitors) are absent. It is important to stress the fact
that the production of the object does not require that one or more objects are
consumed in order to do this. Nonetheless, objects can disappear due to a decay
process. For this reason, objects are marked with a lifetime, which is decreased
by one at each computation step. When this value becomes equal to zero, the
object disappears.

We also consider rules to simulate the action of protein on membranes to com-
municate objects through protein channels, by defining bind and release rules,
and the action of certain substances which act as repressors by connecting to
other objects so to block their action, by defining repressor rules. We show that
systems with all these types of rules are universal, and we point out various
questions and investigation topics for further research.

The rest of the paper is organized as follows. In Section 2 we give some basic
definitions which will be used throughout the paper. In Section 3 we define
Genetic P systems and in section 4 we extend the the basic class with Bind and
Release rules and repressor rules. In Section 5 we provide an universality result
for such an extended class of systems. Section 6 gives some conclusive remarks
and presents various research topics.

2 Basic Definitions

In this section we provide some basic definitions that will be used throughout
the paper. We start with the definition of multisets and multiset operations.

Definition 1. Given a set S, a finite multiset over S is a function m : S — IN
such that the set dom(m) = {s € S|m(s) # 0} is finite. The multiplicity of
an element s in m is given by the natural number m(s). The set of all finite
multisets over S, denoted by My (S), is ranged over by m. A multiset m such
that dom(m) = 0 is called empty. The empty multiset is denoted by ().

Given the multiset m and m’, we write m C m' if m(s) < m/(s) for all s € S
while & denotes their multiset union: m @ m/(s) = m(s) + m/(s). The operator
\ denotes multiset difference: (m\ m’)(s) = if m(s) > m/(s), then m(s) —m/(s)

252 N. Busi and C. Zandron

else 0. The scalar product, j-m, of a number j with m, is (j-m)(s) = j-(m(s)).
The cardinality of a multiset is the number of occurrences of elements contained
in the multiset: |m| =) _gm(s).

The set of parts of a set S is defined as P(S) = {X | X C S}.
Given a set X C S, with abuse of notation we use X to denote also the

multiset
1 ifseX

0 otherwise

mx(e) =
The restriction to a subset of a multiset is defined as follows:

Definition 2. Let m be a finite multiset over S and X C S. The multiset m|x
1s defined as follows: for all s € S,

_fm(s) ifseX
mlx(s) = {0 otherwise

We provide some basic definitions on strings, cartesian products, and relations.

Definition 3. A string over S is a finite (possibly empty) sequence of elements
in S. Given a string u = x1 ... %y, the length of u is the number of occurrences
of elements contained in u and is defined by |u| = n. The empty string is denoted
by .

With S* we denote the set of strings over S, and u,v,w, ... range over S.
Given n > 0, with S™ we denote the set of strings of length n over S.

Given a string w = x1 ...z, and i such that 1 < i < n, with (u); we denote
the i-th element of u, namely, (u); = z;.

Given a string u = 1 ...x,, the multiset corresponding to u is defined as
follows: for all s € S, my(s) = |{i | z; = s,1 < i < n}|. With abuse of notation,
we use u to denote also my,.

Definition 4. With S x T we denote the cartesian product of sets S and T,
with X, S, n > 1, we denote the cartesian product of n copies of set S and with
x7_1S; we denote the cartesian product of sets Si,...,S,, t.e., S x ... x Sy.
The ith projection of (x1,...,Ty) € XP_1S; is defined as mi(x) = x;, and lifted
to subsets X C xI_1S; as follows: my(X) = {mi(x) |z € X}.

Given a binary relation R over a set S, with R™ we denote the composition of n
instances or R, with R* we denote the transitive closure of R, and with R* we
denote the reflexive and transitive closure of R.

3 Genetic P Systems

In this section, we present the definition of Genetic P systems and the definitions
which we need to describe their functioning. To this aim, we start with the
definition of membrane structure:

Computing with Genetic Gates, Proteins, and Membranes 253

Definition 5. Given the alphabet V = {[,]}, the set M S is the least set induc-
tively defined by the following rules:

- [leMS
— if g2,y iy € MS, n > 1, then [py ... pun] € MS

We define the following relation over M S: x ~ y if and only if the two strings
can be written in the following form: © = [1...[2...]2...[3..]3...]1 and y =
[1..-[3--]3---[2--J2. .1 (e, if two pairs of parentheses that are neighbors can
be swapped together with their contents).

The set M S of membrane structures is defined as the set of equivalence classes
w.r.t. the relation ~*.

We say that i is the father of j (and j is a child of i) if the membrane j is
contained in i, and no membrane exists that contains j and is contained in 7.

The partial function father : {1,...,d} — {1,...,d} returns the father of a
membrane i, or is undefined if i is the external membrane.

The function children : {1,...,d} — P({1,...,d}) returns the set of children
of a membrane.

We call membrane each matching pair of parentheses appearing in the membrane
structure. A membrane structure pu can be represented as a Venn diagram, in
which any closed space (delimited by a membrane and by the membranes im-
mediately inside) is called a region of u.
We can give now the definition of Genetic P systems (or GP systems for short).
To this aim, given a set X, we define Rx = P(X) x P(X) x X.

Definition 6. A Genetic P system with timed degradation (of degree d, with
d>1) is a construct

I = (M/“"?w(l)a"'awgaRlv"'aRdviO)
where:

1. V is a finite alphabet whose elements are called objects;

2. p is a membrane structure consisting of d membranes (usually labeled with
i and represented by corresponding brackets [; and |;, with 1 <1i <d);

3. w?, 1 < i < d, are strings over V x (IN U oo) associated with the regions
1,2,...,d of u; they represent multisets of objects of the form (a,t) present
in the regions of u, where a is a symbol of the alphabet V andt > 0 represents
the decay time of that object. The multiplicity of a pair in a region is given
by the number of occurrences of this pair in the string corresponding to that

region;
4. R, 1 <i<d, are finite multisets' of genetic gates over V associated with
the regions 1,2, ...,d of u; these gates are of the forms ugct, "Winp :— (b, t)

where Uger N Uiny, = 0. uqee C V is the positive regulation (activation)?,
! Here we use multisets of rules, instead of sets, because each rule can be used at most
once in each computational step.
2 We consider sets of activators, meaning that a genetic gate is never activated by
more than one instance of the same protein.

254 N. Busi and C. Zandron

Uinp, C V' is the negative regulation (inhibition), b € V' is the transcription
of the gate® and t € IN U oo is the duration of object b;
5. ig 1is a number between 1 and d and it specifies the output membrane of II.

We say that a gate is unary if |ugetr ® winn| = 1.

The membrane structure and the multisets represented by w;, 1 < ¢ < d, in IT
constitute the initial state* of the system. A transition between states is governed
by an application of the transcriptions specified by the genetic gates which is
done in parallel; all objects, from all membranes, which can be the subject of
local evolution (that is, that can be used to apply the rule of a gate which is not
used in the same step by other objects) have to evolve simultaneously.

The gate wuqet, "Uinn :— (b,t) can be activated if the region it belongs to
contains enough free activators and no free inhibitors. If the gate is activated,
the regulation objects (activators) in the set u,.; are bound to such a gate,
and they cannot be used for activating any other gate in the same maximal
parallelism evolution step. On the contrary, if one or more free inhibitor objects
are present in the region where the gate is placed, then one of these objects (non-
deterministically chosen) is bound to the gate, which cannot then be activated.

In other words, the gate uaet, “Uinn :— (b, 1) in a region containing a multiset
of (not yet bound) objects m can be activated if uq¢ is contained in m and no
object in wu;,, appears in m; if the gate performs the transcription, then a new
object (b, t) is produced. Note that the objects in 44 and w;p,;, are not consumed
by the transcription operation, but will be released at the end of the operation
and (if they do not disappear because of the decay process) they can be used
in the next maximal parallelism evolution step. Each object starts with a decay
number, which specify the number of steps after which this object disappears.
The decay number is decreased after each parallel step; when it reaches the value
zero, the object disappears. If the decay number of an object is equal to oo, then
the object is persistent and it never disappears.

Note that the decay number associated to an object depends on the gate that
produced the object (if the object is not present in the initial system), and not on
the type of the object. Hence,a system may contain two gates, say, e.g. a :— (b, 5)
and a, —¢ :— (b, 00): the first gate produces one copy of object b that decays after
5 time units, whereas the second gate produces a persistent copy of object b.°

We adopt the following notation for gates. The activation and inhibition sets
are denoted by one of the corresponding strings, i,e, a,b, —c¢ :— (c¢,5) denotes
the gate {a, b}, ~{c} :— (¢, 5). If either the activation or the inhibition is empty
then we omit the corresponding set, i.e., a :— (b,3) is a shorthand for the gate
{a}, =0 :— (b,3). The nullary gate O, =0 :— (b, 2) is written as :— (b, 2).

3 Usually the expression of a genetic gate consists of a single protein.

4 Here we use the term state instead of the classical term configuration because we will
define a (essentially equivalent but syntactically) different notion of configuration in
Section 5.

5 We could also consider a variant of GP systems where the decaying time is a function
of the type of the object, i.e., all the objects b that are produced in the system will
have the same decaying time. We plan to devote future investigation to this variant.

Computing with Genetic Gates, Proteins, and Membranes 255

3.1 Partial Configurations, Reaction Relation, and Maximal
Parallelism Step

Once defined GP systems, we are ready to describe their functioning. Hence, we
give now the definitions for partial configuration, configuration, reaction relation,
and heating and decaying function.

Definition 7. Let IT = (V,u,w?,..., w9, Ry,..., Rq,io) be a GP system.

A partial configuration of IT is a tuple (w1, Ry, w1, R1), ..., (wg, Rg, wq, Rq) €
Xa((V X IN) x Ry x (V x IN) X Ry).

We use xf:l(wi, R;w;, Ri) to denote the partial configuration above.

The set of partial configurations of II is denoted by Confr. We use v, v, 71,
... to range over Confiy.

wy, ..., wq represent the active multisets, whereas w1, . . . , Wy represent the frozen
(already used) multisets, Ry, ..., Rq represent the active gates, while Ry, ..., Ry
represent the frozen (already used) gates.

A configuration is a partial configuration containing no frozen objects; config-
urations represent the states reached after the execution of a maximal parallelism
computation step.

Definition 8. Let IT = (V, p,w?,...,wY% R1,..., Ra,i0) be a GP system.

A configuration of IT is a partial configuration x%_, (w;, R;,w;, R;) satisfying
the following: w; = () and R; = 0 fori=1,...,d.

The initial configuration of IT is the configuration x%,(w?, R;,0,0) .

1=

The activation of a genetic gate is formalized by the notion of reaction relation.
In order to give a formal definition we need the function obj : (V x IN)* — V*,
defined as follows. Assume that (a,t) € (V x (INUoo)) and w C (V x (IN Uoo))*.
Then, 0bj(A\) = A and obj((a,t)w) = a obj(w).

We also need to define a function DecrTime which is used to decrement
the decay time of objects, destroying the objects which reached their time
limit.

Definition 9. The function DecrTime : (V x IN)* — (V x IN)* is defined as
follows:

DecrTime(N) = A

and

. a,t —1)DecrTime(w) ift > 1
DeerTime((q, thw) = {E)echi)ne(w)) i;t =1

We are now ready to give the notion of a reaction relation.

Definition 10. Let IT = (V,p,w?,..., w9, Ry,..., R4, i) be a GP system.
The reaction relation — over Confr x Confr is defined as follows:

x4 (wy, Ry, wi, Ri) w— x%_y (w!, R:, wh, RY) iff there exist k, with 1 < k < d
and Uget, "Winn :— (b,t) € Ry, such that

256 N. Busi and C. Zandron

- [:{/ = {%k \ (uacta Uinh (b7 t))
- R;c = Rk S (uact7 Uinh T (b7 t)) _ _
—Vi:1<i<d andi#k implies w, = w;, 0, =w;, R, = R; and R, = R;
— if Uinn Ndom(obj(w)) = 0 and Fwaer C wi such that® obj(Waet) = Uaet then
® Wi =Wk \ Wact
o Wi = wy ® {(b,t)} ® DecrTime(wact)
— if A(s,t) € dom(wy) such that s € uiy then
o W, = (w)\ (51)
o w, = wy ® DecrTime((s,t))

Definition 11. The function heat&decay : Confrr — P(Confr) is then de-
fined as follows: B B
heat&decay (x4, (w;, Ri, w;, R;)) = x, ((DecrTime(w;))®w;), Ri®R;, 0, 0)

Now we are ready to define the maximal parallelism computational step =

Definition 12. Let IT = (V,p,w?,..., w9, Ry, ..., Ra,io) be a GP system.

The maximal parallelism computational step = over (nonpartial) configura-
tions of II is defined as follows: v1 = o iff there exists a partial configuration
v such that vy —T ', v' v/ and o = heat&decay(y').

4 Genetic P Systems with Bind&Release and Repressor
Rules

The use of genetic gates alone is quite restrictive. For instance, no communication
of objects is possible through the membranes, a feature which is fundamental
in the basic variant of P systems. In fact, without communication the system
would not act as a whole unit, but instead as a collection of separate systems or
processes of various types, without interaction.

In order to enrich the model described so far, we consider also two other types
of rules which mimic two different important cellular reactions.

The first type of rules we consider (Bind&Release), mimics the communication
of objects through a protein channel. Two (multisets of) substances are bound
to both sides of a membrane. Then, by means of a channel in the membrane,
they pass in opposite directions through the membrane itself, exchanging in this
way their position. Finally, they can be released in their (new) region.

The second type of rules we consider (Repressor) mimics the action of certain
substances that act to deactivate other substances present in the cell. When such
a substance (a repressor) get in contact with another object, it creates a bond
which cannot be destroyed. The object (and the repressor substance) cannot be
used anymore for any other reaction. We notice that the repressor can create
such a bond in any region of the cell. For this reason, the set of repressor rules
will be valid for the whole system (i.e., we will not define different set of repressor
rules for each region).

5 The symbol = should be intended here as working on multisets.

Computing with Genetic Gates, Proteins, and Membranes 257

We provide the definition of Genetic P systems extended with Bind&Release
and Repressor rules:

Given a set X, we define Rx = P(X) x P(X) x X and BRx = P(X) x
P(X) x P(X) x P(X)

Definition 13. A Genetic P system with timed degradation, Bind and Release
actions and repressor rules (of degree d, with d > 1), or GTP system for short,
158 a construct

= (V,pw?, ..., w9, R1,...,Rq, BRy,..., BRy, Rs,i0)

where

~

V, 1, io, and w9, R;, for 1 <i <d, are defined as in Definition 6.

2. BR;, 1 < i < d, are finite multisets of Bind and Release rules over V
associated with the regions 1,2, ..., d of u; these rules are of the forms u[v] —
v[u] where u,v € V*, and |uv| > 0. The weight of a Bind and Release rule
ul[v] — vl is Ju| + |v.

3. Rs is a finite multiset of repressor rules; these rules are associated with the

system (and not to each region), and they are of the form a,b — a&b where
a,beV.

Besides evolution driven by the application of transcriptions specified by genetic
gates and object degradation, evolution steps in GTP systems are also concerned
with object migration through membranes and proteins repression.

Objects can be moved through membranes using bind and release operations.
If outside a region 7 is present a multiset u of objects in (V' x IN) and inside
i a multiset v of objects in (V' x IN), then a rule u[v] — v[u] in BR; can be
activated, moving the multisets v and v outside and inside region ¢, respectively.

Finally some objects can act as repressor objects, by means of repressor rules
Rs. Such a rules of the form a,b — a&b is activated when a repressor object b
is present, thus binding to an object a and creating a new object which cannot
be used anymore with any other rule.

4.1 Partial Configurations, Reaction Relation, and Maximal
Parallelism Step

As we did for the basic case, we give now the definitions for partial configuration,
configuration, reaction relation, and heating and decaying function for G+ P
systems.

Definition 14. Let
= (V,u,w?, ..., w9, R1,...,Rq, BRy,..., BRy, Rs,i0)

be a GTP system.
A partial configuration of IT is a tuple
(wl, Ri1, BRy, w1, Rh BRl), Ceey (wd, Ry, BRg, wgq, Rd7 BRd)
€ Xqg((VxIN) x Ry x BRy x (V x IN) x Ry x BRy).

258 N. Busi and C. Zandron

We use xL,(w;, Ri, BR;,w;, R;; BR;) to denote the partial configuration
above. The set of partial configurations of II is denoted by Confr. We use
¥, 71, - .. to Tange over Confy.

w1, ..., wy represent the active multisets, w1, ..., wy represent the frozen (al-
ready used) multisets, Ri,..., Ry represent the active gate rules, Ry,...,Rq
represent the frozen (already used) gate rules, BRy,..., BR; represent the ac-
tive Bind&Release rules, Ry, ..., Rq represent the frozen (already used) Bind&
Release rules.

A configuration is a partial configuration containing no frozen objects; config-
urations represent the states reached after the execution of a maximal parallelism
computation step.

Definition 15. Let
= V,p,w?,...,w%, Ry,...,Rq, BRy, ..., BRg, Rs,i0)

be a GTP system.

A configuration of II is a partial configuration ><§i:1(wi7 R;,BR;,w;, R;, BR))
satisfying the following: w; =0, R; =0 and BR; =0 fori=1,....,d.

The initial configuration of IT is the configuration x¢_ (w9, R;, BR;,0,0,0).

The activation of a genetic gate is formalized by the notion of reaction relation.
In order to give a formal definition we need the function obj : (V x IN)* — V*,
defined as follows. Assume that (a,t) € (V x (INUoo)) and w C (V x (INUoo))*.
Then, 0bj(A\) = A and obj((a,t)w) = a obj(w).

We also need to define a function DecrTime which is used to decrement the
time index used objects, destroying the objects which reached their time limits.
The function DecrTime : (V x IN)* — (V' x IN)* is defined as follows:

Definition 16. DecrTime(\) = A
and

(a,t — 1)DecrTime(w) ift > 1

DecrTime((a, tyw) = {Dechime(w) ift=1

We are now ready to give the notion of reaction relation.
Definition 17. Let
= V,uuw?,...;w),Ry,...,Rq, BRy,..., BRg, Ry, i0)

be a GTP system.

The reaction relation — over Conf; x Confr is defined as follows:

x%_, (w;, R;, BR;,w;, R;, BR;) x?zl(w§7R§7BR§,wg,R;BR;) iff there ex-
ist k, with 1 < k <d and a rule R in Ry U BRy U Rs such that

CASE 1: IF R : uget, "Uinp :— (b, t) € Ry, THEN

(
- El = -@k \ (uactu TWUinh T (bv t))
— R, =Ri® (Uact7 TUinh T (7t))

Computing with Genetic Gates, Proteins, and Membranes 259

Vi:1<i<d andi#k implies w, = w;, W, = w;, R, = R; and R, = R;

— if winp, Ndom(obj(wg)) = 0 and Fwaer C wy such that 0bj(waer) = Uger then
o W = Wi \ Wact
o w, =wy ® {(b,t)} ® DecrTime(wact)

if A(s,t) € dom(wyg) such that s € wipnp then

wy, = (wk) \ (s,1)

— W}, = Wy, ® DecrTime((s,t))

CASE 2: IF R : u[v] — v[u] € BR;, THEN

= AU € Wiather(k)y and Ve, C wy such that u = obj(Uy,) and v = obj (Vi)

—Vi:1<i<d i+#kandi# father(k) implies w, = w;, w, = w;,
BR! = BR; and BR, = BR,

- BR}ather (k) — BRfﬂthET(k)

BRfathPr(k BRfather(k)

- father(k) = Wgather(k) \ Upr

- wfathyr(k) = wfather(k) S Dech@m@(%r)
— BRj, = BR \ (u[v] — vu])

- BR;c = BR, @ (u[v] — U[UD

- w;c = (wk) \ %T

— w), = wy, ® DecrTime(Uy,)

CASE 3: R:a,b— a&b <€ R,

— 3(a,t1), (b,t2) € (V x IN) and (a,t1), (b, t2) € wg
—Vi:1<i<d,i#kw,=w; and w, = w;
~Viil<i<d R =R; od R, = I
~Vi:1<i<d, BR,=BR; and BR; = BR,

— Wy = wi \ (a,81) \ (b, 12)

— Wy, = Wy, & (a&b, min(ti,t2))

Definition 18. The function heat&decay : Confry — P(Confrr) is defined as
follows:

heat&decay(e 1(u;Z,R“BRZ,wZ,R“BR) =

x4, (DecrTime(w;) ® w;), R; ©® Ri, BR; ® BR;, 0,0, ()

Now we are ready to define the maximal parallelism computational step =-:

Definition 19. Let I = (V,p,w?, ..., w9, R1,..., R4, BRy,..., BRg, Rs,i0) be
a GTP system.

The maximal parallelism computational step = over (non-partial) configura-
tions of II is defined as follows: y1 = o iff there exists a partial configuration
v such that y1 —T ~', v v/ and vo = heat&decay(y').

5 Turing Equivalence of Gt P Systems

In this section we show that GT P systems with Bind and Release rules of weight
one are Turing powerful. The result is proved by showing how to model Random
Access Machines (RAMSs) [8], a well known Turing powerful formalism.

We start recalling the definition of RAMs.

260 N. Busi and C. Zandron

5.1 Random Access Machines

RAMs are a computational model based on finite programs acting on a finite
set of registers. More precisely, a RAM R is composed of the registers rq, ..., r,,
that can hold arbitrary large natural numbers, and by a sequence of indexed
instructions (1 : Iy),...,(m : I;). In [2] it is shown that the following two
instructions are sufficient to model every recursive function:

— (i : Suce(rj)): adds 1 to the contents of register r; and goes to the next
instruction;

— (i : DecJump(r;,s)): if the contents of the register r; is not zero, then
decreases it by 1 and goes to the next instruction, otherwise jumps to the
instruction s.

The computation starts from the first instruction and it continues by executing
the other instructions in sequence, unless a jump instruction is encountered.
The execution stops when an instruction number higher than the length of the
program is reached.

A state of a RAM is modeled by (i, ¢1, ..., cy,), where 7 is the program counter
indicating the next instruction to be executed, and cy,...,c, are the current
contents of the registers r1, ..., r,, respectively. We use the notation (i,cq, ...,
en) —r (V,c),...,c,) to denote that the state of the RAM R changes from
(i,¢1,...,¢n) to (i,¢),...,c)), as a consequence of the execution of the i-th
instruction.

A state (i,c1,...,cp) is terminated if the program counter i is strictly greater
than the number of instructions m. We say that a RAM R terminates if its
computation reaches a terminated state. The output of the RAM is the contents
of register r; in the terminated state of the RAM (if such a state exists).

5.2 Encoding RAMS in Gt P Systems

In this section we show how to model RAMs in G*P systems. Given a RAM
with n registers, the system is composed by an external membrane, containing
n children membranes, each one representing one register: [o[1 |1 ... [n Jn]o (to
simplify the notation, we label the external membrane with 0 instead of 1). The
fact that register r; contains value ¢; is represented by the presence of ¢; copies
of object (r;,00) in the membrane . The instructions are encoded by genetic
gates. The presence of object p; in some part of the system represents the fact
that the program counter contains the value 4 (i.e., the next instruction to be
executed is the ith). At the beginning of the computation, an object (p;,2) is in
the external membrane. All the objects representing the program counter will
be produced with duration 2.

As the output of the RAM is the contents of register r1 in the terminated state
of the RAM, the output of the RAM encoding is the number of occurrences of
object (r1,00) in membrane 1.

Usually, when providing a RAM encoding of a P system, the output of the
RAM encoding is taken in (one of the) halting configurations of the encoding.

Computing with Genetic Gates, Proteins, and Membranes 261

When considering GP systems, we note that it is not trivial to define what is a
halting configuration. Take, e.g., the system with a negative gate —a :— (b, 1),
reaching a configuration containing only a persistent object (a, 00): according to
the reaction relation, this system never terminates. Actually, no real computation
is performed, but what happens is that the inhibitor protein (a, co0) is attacked
to the negative regulation part of the gene.

Hence, here we adopt a different “termination” condition for GP systems,
quite similar to the acceptance condition of automata with final states. Namely,
we consider a computation to be successfully terminated if a configuration is
reached which contains a distinguished persistent object (end, co) in the external
membrane. The definition of other suitable notions of termination for GP systems
is left for future investigation.

We provide a RAM encoding which satisfies the following condition: the RAM
terminates with output & if and only if the encoding of the RAM reaches a
configuration containing the object (end, co) in the membrane 0, and containing
exactly k occurrences of object (r1,00) in membrane 1.

We consider RAMs that satisfy the following constraints:

1. If the RAM has m instructions, then all the jumps to addresses higher than
m are jumps to the address m + 1.

2. The “self-loops” on DecJump instructions — i.e., instruction of the kind (7 :
DecJump(rj,i)) — are forbidden.

3. The instruction following a DecJump (either if the decrement or if the jump
is performed) is an increment.

Such constraints are not restrictive, as for any RAM not satisfying the constraints
it is possible to construct an equivalent RAM (i.e., a RAM computing the same
function) which satisfies the constraints above.

Consider a RAM with m instructions and n registers.

The first constraint can be easily satisfied by replacing each jump to an address
higher than m to a jump to the address m + 1.

The second constraint can be satisfied by adding to the RAM a new register
rn+1 that always contains the value zero, and by replacing each instruction
(¢ : DecJump(r;j,i)) with a pair of instructions (i : DecJump(r;,i + 1)) and
(i + 1 : DecJump(rpy1,4). This means that the instructions following the ith
instruction are shifted with one position. More in detail, forallh:i+1 < h <m
we replace h with h + 1 in all the labels of the program, as well as in all the
labels occurring in the jump instructions of the program.

The third constraint can be satisfied by adding a new register 7,2 — that will
ever be incremented and never tested — and by replacing each instruction that
can be reached after performing a DecrJump instruction with the instruction
Suce(rn12), and by shifting accordingly the other instructions.

If the RAM has m instructions, then the following gate belongs to mem-
brane 0:

Pm+1 i — (enda OO)

262 N. Busi and C. Zandron

This rule permits the system to signal termination when the instruction p,,+1
is reached. (Actually, as we will see in the following, two instances of (end, 0o)
are produced, but this is not a problem.)

If the ith instruction is (i : Succ(r;)), then the following sequence of rules of
membrane 0 is executed:

step 1: p;, —rj :— (15, 00)

step 2: p;, 75, "Pit1 i (Pit1, 2)

step 3: 7;[|; — [r;];

If object r; enters membrane j before the object p;;1 is created, no new
program counter i 4+ 1 will be created and the system will either stop in a failed
computation or diverge without reaching a configuration with object end. As
the program counters have duration equal to 2, at step 3 the object p; decays.

If the i-th instruction is (i : DecJump(r;, s)) then the following sequence of
rules is executed:

step 1: pi[J;; :— [ps]i; (in membrane)

If the contents of register r; is zero (no occurrences of r; in membrane j):
step 2: p;, —r; *— (ps, 3) (in membrane j)

step 3: [ps]; — ps []; (in membrane j)

After step 2 the object p; decays. If object p; erroneously exits the membrane,
then p; decays just after exiting, and the system reaches a failed computation
(or will diverge).

If the contents of register r; is greater than zero:

step 2: p;,rj, ~dec; ; :— decr; ; (in membrane j)
step 3: rj, decr; j — (pi+1,3) (in membrane j)
step 4(1): r;,decr; ; — r;&decr; ; (in membrane j)
step 4(2): [pi+1]i; — pit1 [i, (in membrane j)

After step 2 the object p; decays. Steps 4(1) and 4(2) are executed in the same
maximal parallelism step. If the rule at step 4(1) takes place before step 3 (i.e.,
the repressor bounds to r; before that p;1 is created), then no new program
counter is created and the system reaches a failed configuration (or will diverge).

The formal definition of the encoding of a RAM R with m instructions and
n registers, whose registers r1,...,r, contain values ci,...,c, is reported in
Table 1.

If some of the registers contain a value greater than zero when the RAM
terminates, then the system reaches a configuration containing the end object,
but because of gates p;, —r; :— (ps, 3) the system will never terminate. To obtain
an encoding that guarantees that the configurations containing the end object
can perform no further computation, we could add to the RAM a further register
Tna1, that will never be decreased, and consider only RAMs that terminate with
all registers empty but 7,11, and the result is contained in register r,41. If we
provide a slight variation of the encoding, where membrane n + 1 contains no
gates (as register 7,41 can only be increased), then the above requirement is
fulfilled.

Computing with Genetic Gates, Proteins, and Membranes 263

Table 1. The G P system encoding a RAM R

H(R) = (V7/J“7w87"'7w37R07“'7RdyBR07--~7BRd7RS7iO)

V={pi|1<i<m4+1}U{r |1 <i<n}u
{decri; |1 <i<m+1A1<j<n}U{end}

w=lolrJ1---[n]nJo

wy = (p1,2)

lwf| = ¢j and (wf)i = (rj,00) j=1,...,nand i=1,...,¢;

Ry =

{pm+1:— (end, o0)}U

{pi, 75, "pit+1 :— (Pi+1,2) | the ith instr. is (¢ : Suce(r;)), i=1,...,m}U
{pi,"'j,“pi.i,—l g (pi+1,2) | the ith instr. is (Z : SUCC(T’J')), 1= 1, .. .,m}

R; =

{pi,—r;j :— (ps,3) | the ith instr. is (¢ : Decr Jump(r;,s))}U
{pi,rj, ~dec;,j :— decr;; | the ith instr. is (i : DecrJump(rj, s)) U
{rj,decr; ; — (pi+1,3) | the ith instr. is (i : DecrJump(r;, s))}

BRo ={rj[] = [r] |1 <j<n}

BR; =

{ril] = [

{pi[] — [pi] | theith instr. is (i : DecrJump(r;,s)), i =1,...,m}U
{[pi] — pi[]| the ith instr. is (i : Succ(r;)), i = 1,...,m}

Rs = {rj,decr;j — rj&decr;; | 1<j<nAl<i<m+1}

i0=1

Another feature of the encoding is the fact that, if an erroneous action is
performed, then the system can reach a failed configuration (i.e., a deadlocked
configuration that does not contain the end object). It is possible to produce an
encoding that diverges when an erroneous action is performed, by adding to the
membrane 0 the gate —end :— loop. However, in such a case, the configuration
containing the end object is no longer terminated. A possible solution could be
to signal termination by emitting the end object outside the external membrane.

In this section, we only use a restricted version of the Bind and Release rules,
namely, rules with weight 1. We claim that, by using cooperative symport or an-
tiport rules in combination with very simple genetic gates permitting to generate
as many copies as you want of any object, Turing equivalence can be obtained

264 N. Busi and C. Zandron

as an easy consequence of the results recalled in [7]. We stress the fact that we
use Bind and Release rules of weight 1 to get universality, as symport rules of
weight 2 (or alternatively antiport rules with one object entering the membrane
and one object exiting the membrane) are already universal, without taking into
account genetic gates.

We proved Turing equivalence of G P systems with Bind and Release rules
of weight one and suppressor rules. We started some investigation on the expres-
siveness of more restricted versions of Gt P systems.

We conjecture that in GT P systems with only positive gates and with Bind
and Release rules of weight 1 (and without repressor rules) it is possible to decide
if a system can reach a configuration containing a end object. This result could be
proved by using the set saturation methods for well-structured transition systems
defined in [1]. A consequence of this conjecture is the fact that such a class of
systems is not Turing equivalent, according to the encoding rules defined above.

If we consider systems with both positive and negative gates and with persis-
tent objects (i.e., objects with an infinite duration) only (and without bind and
release rules and without repressor rules), we conjecture that the set of configu-
rations of the system with the maximal parallelism rule is a finite state machine,
hence most of the behavioral properties can be decided.

6 Conclusions

We have presented Genetic P systems, a new class of P systems where objects
can be produced by means of evolution rules which are inspired from the func-
tioning of the genes: a gene is activated (producing a new object), when certain
substances (activators) are present while other substances (inhibitors) are absent.

We have also considered rules that mimic the action of proteins on mem-
branes to communicate objects through protein channels, and rules simulating
the action of repressor substances. We showed that systems with all these types
of rules are universal.

Many investigations and research directions can be explored.

For instance, we can consider different kind of genetic gates, where more
objects can be created at the same time by a single activation of the gate, or
where the inhibition requires the presence of all inhibiting substances.

Also genetic gates where both inhibitors and activators can be attached to
the gate at the same time can be considered.

In what concern the decaying process of the objects, we could also consider
a non—deterministic decay process: at each parallel evolution step some objects
are non—deterministically chosen to be eliminated from the set of objects in the
system.

Various questions already investigated for “classic” P systems, could be in-
vestigated also for the systems defined in this paper, such as, for example, de-
cidability, computational power, comparison with other formalisms.

We also think that such a model would be useful to be used in the systems
biology area, to simulate various biological cell processes.

Computing with Genetic Gates, Proteins, and Membranes 265

References

1. A. Finkel, Ph. Schnoebelen. Well-structured transition systems everywhere! Theo-
retical Computer Science, 256:63-92, 2001.

2. M.L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Englewood
Cliffs, 1967.

3. G. Paun. Computing with membranes: an introduction. Bull. EATCS 67, 1999.

4. G. Paun. Computing with membranes. Journal of Computer and System Sciences,
61(1):108-143, 2000.

5. G. Paun. Membrane Computing. An Introduction. Springer, 2002.

6. G. Paun. 2006 research topics in membrane computing. Proc. Fourth Brainstorming
Week on Membrane Computing, Felix Editora, Sevilla, 2006.

7. Y. Rogozhin, A. Alhazov, R. Freund, Computational power of symport/antiport:
History, advances, and open problems. Proc 6th International Workshop on Mem-
brane Computing (WMC6), LNCS 3850, Springer, 2006.

8. J.C. Shepherdson, J.E. Sturgis. Computability of recursive functions. Journal of
the ACM, 10:217-255, 1963.

9. P Systems webpage. http://psystems.disco.unimib.it.

Classifying States of a Finite Markov Chain
with Membrane Computing

Ménica Cardona', M. Angels Colomer’,

Mario J. Pérez-Jiménez?, and Alba Zaragoza'

! Department of Mathematics, University of Lleida
Avda. Alcalde Rovira Roure, 191. 25198 LLeida, Spain

{mcardona, colomer,alba}@matematica.udl.es

2 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
marperQus.es

Abstract. In this paper we present a method to classify the states of a
finite Markov chain through membrane computing. A specific P system
with external output is designed for each boolean matrix associated with
a finite Markov chain. The computation of the system allows us to decide
the convergence of the process because it determines in the environment
the classification of the states (recurrent, absorbent, and transient) as
well as the periods of states. The amount of resources required in the
construction is polynomial in the number of states of the Markov chain.

1 Introduction

Markov chains constitute an important type of stochastic processes characterized
by their evolution along determinate values (called states of the process) over
time. These chains represent observations of physic systems whose evolution at a
future time, conditioned on their present and past values, depends only on their
present value. Thus, the Markov chain loses the memory of its starting state.

In order to study the evolution in time of a Markov chain as well as the
existence of the stationary distribution it is necessary to classify its states. This
classification depends on the path structure of the chain.

In this work this problem is approached within the framework of the cellular
computing with membranes. The amount of resources that we use is polynomial
in the number of states. This subject has been also treated in terms of DNA
computing ([1]), based on a mathematical proposition of existence rather than
on the classical definition of the period of a state. This is due to the fact that
DNA computing is good in detecting the existence, but it has difficulties in
obtaining numerical quantifications.

The paper is structured as follows. In the next section, basic concepts concern-
ing Markov chains and P systems are introduced. In Section 3 a semi—uniform

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 266-278, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Classifying States of a Finite Markov Chain with Membrane Computing 267

solution to the problem of classifying the states of a Markov chain in the frame-
work of membrane computing is presented. Moreover, a formal verification of the
system is given, and the run time and the resources required in the description
of the system are analyzed.

2 Preliminaries

2.1 Markov Chains

Markov chains are a class of random processes exhibiting a certain memoryless
property and providing a fundamental ingredient in the study of randomized
algorithms. Their study is one of the main areas in modern probability theory.

A Markov process is a stochastic process that has a limited form of historical
dependency. Let {X (¢) : t € 7} be a stochastic process defined on the parameter
7. We will think of 7 in terms of time and the values that X (¢) can assume are
called states which are elements of a state space S. In the case when the set 7
is discrete and the set S is finite, the Markov process is called a discrete—time
finite Markov chain. We consider this kind of Markov chains because computer
programs work in discrete steps and computers work with a finite amount of
resources and have a finite number of states.

More formally, a finite Markov chain is a sequence {X; : t € N} of random
variables verifying the following (Markov) property:

P(Xiy1 =7/ Xo =10, X1 =i1,...,X¢ =4¢) = P(Xyq1 = j/ X = iy).

That is, the value of X1 conditioned on the value of X4, is independent of
the values of random variables X,, for m < t.

We suppose that the state space of the chain, S, is the (finite) set of nonneg-
ative integers {ej,...,er} (whose elements are called states or results), and the
chain is characterized by its evolution among these states over time.

Hence, a finite Markov chain {X; : t € N} provides a random process by a
change of states or results eq, ..., ex in certain instants of discrete times ¢ € N,
and where the result of each event only depends on the result of the previous
event. So, such a Markov chain is characterized by the conditional distribution

pij(t) = P(X; =ej/Xi—1 =¢;), forall t > 1,

which is called the transition probability of the process, providing one—step tran-
sition probability.

We say that a finite Markov chain is time homogeneous or it has stationary
transition probabilities if the dependence between consecutive states does not
change, that is, P(X,, = ¢;/X,,—1 = €;) = P(Xptm = €j/Xntm—1 = €;), for
all n,m € N, e;,e; € S. In this case, we write the transition probability as
pij = P(Xn = e;/Xn-1 = e;). These probabilities form a stochastic matrix
P = (p;;) with Z?lelj =1,Vi e {1,...,k}, called transition matriz. If p;; # 0
then we say that the transition from the state e; to state e; is possible.

268 M. Cardona et al.

The Markov property allows us to write an expression for the probability of a
transition in one, two, three or more steps. For n = 1 this probability is simply
pi; and is given by the position (7, j) of the transition matrix P. For n = 2 the
probability that the chain is in state e; at step 2 is pg) = Zle DirPrj, and is the
position (i,7) of the matrix P2. In general, the probability that the process is in

state e; n steps after being in state e; is given by pg;l) = Z’::l pgln)py;fm% 0<
m < n, and is the position (¢, j) of the matrix P™ = P™P"~™ (by the rules for
matrix multiplication).

The conditions

1
pz(*j) = Pij,
k

pi =3 "p pl Y, for all m > 2,
r=1

are called the Kolmogorov—Chapmann equations associated with the homoge-
neous Markov chain whose transition matrix is P = (pi;)1<i j<t ([4])-

We denote the initial probabilities by means of the vector qo = (g3, - - ., q%),
and for each n > 1 we consider the vector ¢, = (¢}, ..., ¢"), where ¢ (1< j < k)
is the probability to reach the state e; after n steps of the random process.

Notice that we have g,, = qoP™, for each n > 1. So, in order to determine the
distribution ¢, it is enough to study the matrix P™. In [2] the natural powers
of the transition matrix of a finite and homogeneous Markov chain within the
framework of membrane computing are computed. Moreover, the limit of the
sequence {P™ : n € N} of these matrices allows us to obtain the distribution
limit in the case that it exits, and to know the stationary distribution of the
process. For more details see [3] and [4].

There is a well known result [5] relating the existence of the limit of the
sequence {P™ : n € N} with the classification of the states of the Markov chain.
So, we give now a classification of the states of a Markov chain and the condition
by the existence of the limit.

A state e; is accessible from the state e;, denoted by e; — e;, if there is a

natural number n > 0 such that p(n)

i > 0. Two states e;, e; are communicating
states, denoted by e; < e, if e; is accessible from e; and e; is accessible from
e;. The relation of communication is an equivalence, so we can consider the
equivalence classes associated with it.

The following result shows that in a finite Markov chain with k states, if we
know all the paths of length & — 1, then we can know all the communicating

states.

Proposition 1. Let e;,¢e; be states of a finite Markov chain with k states such
that e; is accessible from e;. Then there exists a path with length smaller than k
from e; to e;.

This result can be proved by substituting the nodes repeated in the path by only
one copy of each of them.

Classifying States of a Finite Markov Chain with Membrane Computing 269

A state e; is called recurrent if for all e; such that e; — e;, then e; — €;. On
the contrary, if there exist j such that e; — e; but e; /4 e; (that is, there is a

natural number m and a state e; such that pgn) > 0 but pg?) =0 for all n € N),
the state e; is called transient. If in an equivalence class there exists a recurrent
(resp. transient) state, then every state of the class is recurrent (respectively)
transient. If the class of a recurrent state e; is formed only by this state, we say
that e; is an absorbent state (pz(-;) =0 for all e; # e; and for all n € N).

Given a state e; such that there exists n > 0 and pg?) > 0, we define its period
as

(i) = g.c.d{n>1|p\" > 0}.

All states that belong to the same class have the same period. If the period is 1,
the class is said to be aperiodic, otherwise we refer to it as a periodic class.

The problem of classification is an important one in the mathematical study of
Markov chains and related stochastic processes because it allows us to study their
asymptotic behavior. If we think a Markov chain as a system evolving along the
time, then we are interested in analyzing how that evolution is carried out. For
that, we study the existence and the uniqueness of the stationary distributions,
and the convergence to stationarity starting from any initial distribution. That
study is related with the number of recurrent classes of a finite Markov chain.

There are some necessary conditions for the existence of stationary distribu-
tions, that is to say, there are some results which provide us with information
about the existence of the limit of the sequence of the matrix powers of a finite
Markov chain ([5]).

Theorem 1. For any Markov chain with finite states, there exists a unique
stationary distribution if and only if the set of states contains precisely one
recurrent class.

Theorem 2. A necessary and sufficient condition for the existence of a limit
distribution is that there is, in the set of states of the chain, exactly one aperiodic
recurrent class.

2.2 Membrane Systems

Membrane computing is a branch of Natural Computing, considered in October
2003 by Thomson Institute for Scientific Information (ISI) as a Fast Emerging
Research Frontin Computer Science [9]. It was initiated at the end of 1998 by Gh.
Paun (by a paper circulated at that time on web and published in 2000 [6]). Since
then it has received important attention from the scientific community. Details
can be found at the web page http://psystems.disco.unimib.it, maintained
in Milano under the auspices of the European Molecular Computing Consortium,
EMCC.

In short, one abstracts computing models from the structure and the func-
tioning of living cells, as well as from the organization of cell in tissues, organs,

270 M. Cardona et al.

and other higher order structures. The main components of such a model are
a cell-like membrane structure, in the compartments of which one places multi-
sets of symbol-objects which evolve in a synchronous maximally parallel man-
ner according to given evolution rules, also associated with the membranes.
The objects can also be described by strings, they can pass through mem-
branes, can exit the system; in turn, membranes can be divided, dissolved,
created.

A large variety of computing models, called P systems, were considered in this
framework, based on the fundamental concept of biological membrane; the re-
spective models are distributed (compartmentalized) parallel computing devices,
processing multisets of abstract objects by means of various types of evolution
rules. Parallelism, communication, non-determinism, synchronization, dynamic
architecture of the model, etc. are central concepts of the theory, with biological,
mathematical, and computer science sources of inspiration.

In this way, a comprehensive and systematic interdisciplinary research area
was developed, of a high generality and versatility, where models can be de-
vised for a large range of processes where compartmentalization and multiset
processing are natural ingredients. Thus, although the initial goal of membrane
computing was only to learn new ideas, tools, techniques from cell biology to the
help of standard computers, much in the same way as, e.g., evolutionary com-
puting suggests algorithms to be implemented on the electronic computer, the
membrane computing became a new framework for building models for a large
variety of processes, especially from biology (cell biology, tissues, populations of
bacteria, controlling networks of complex phenomena, tumor growth, etc.), but
also from linguistics, management, with several applications to computer science
(computer graphics, approximative solutions to computationally hard problems,
modeling parallel architectures, cryptography).

Most of these models were proven to be computationally universal, able to
compute whatever a Turing machine can compute. In the case when an enhanced
parallelism is available, by means of membrane division, string-object replication,
or membrane creation, polynomial (often linear) time solutions to NP-complete
problems were found.

In many variants, P systems are seen as devices of a generative nature, that
is, from a given initial configuration several distinct computations may be de-
veloped, in a non—deterministic manner, producing different outputs.

In this paper we work with P systems with external output and performing
computing tasks. For example, if a certain natural number, n, is encoded by the
multiplicity of a special object in the initial configuration and we consider the
cardinality of the multiset contained in the environment of a halting configu-
ration as the result of a successful computation, then we can interpret that to
mean that the system computes a partial function from natural numbers onto
sets of natural numbers.

In the following, we assume that the reader is familiar with the basic notions
of P systems, and we refer, for details, to [7].

Classifying States of a Finite Markov Chain with Membrane Computing 271

3 Computing the Classification of the Steps of a Finite
Markov Chain

3.1 Designing a P System

The goal of this paper is to obtain the classification of the states of a finite and
homogeneous Markov chain within the framework of the cellular computing with
membranes.

Let Py = (pij)1<i,j<k be a boolean matrix associated with a finite and homo-
geneous Markov chain of order k such that p;; = 0 if the transition from e; to e;
is not possible, and p;; = 1 if the transition from e; to e; is possible; that is, P
is the adjacency matrix of the directed graph associated with the Markov chain.

The solution presented in this paper is a semi—uniform solution to the problem
of classification, in the following sense: we give a family IT = {II(P;) : k € N},
associating with P a P system with external output, such that:

— There exists a deterministic Turing machine working in polynomial time
which constructs the system II(Py) from Py.

— The output of the P system IT(Py) provides the classification of the k states
of the Markov chain as well as the period of the states.

We associate with the matrix Py a P system of degree 4 with external output,
H(Pk:) = (F(Pk:)u :U’(Pk)a Mla MQ; M?n M47 R7 p)
defined as follows:

— Working alphabet:
F(Pk):{aij, bi]‘, dij, tiji ISZ,]Sk,} U{Crl 0§TS2]€+2}U
{tijuT: 1<id,5,u<k, Oﬁrﬁk} U{,Bi: OSZSO[-F].}U
{Sijrl 1§7;7j§]€70§7"§/€}U{Ai1, Yi :].S’LS]C}U

where o = 2k + 4 + [lgyk] + *7HFF2),

— Membrane structure: [I,(Pk) = [1 [2 [3 [4]4]3]2]1.
— Initial multisets:

My = 0; My = {Bo}; Mz = {co};
My=1{su 27"V 1<ij <k},
— The set R of evolution rules consists of the following rules:

e Rules in the skin membrane labeled by 1:
r1 = {bijbji — aija;; 0 1 <i<j<k}
ra ={bij = vi; Yiaijdipdjp — (TipTjp,out) : 1 <, j,p < k}
rg = {vidip — (Tip,out) : 1 <4,5,p <k}
rqy = {aijdip — (Rip,out) : 1 <4,5,p <k}
rs = {din — (Ai,out): 1<i<k}

272 M. Cardona et al.

e Rules in the membrane labeled by 2:
T6:{b?j—>bij2 ISZ,]Sk} U{ﬂiqﬂi_s_ll OSZSO(} U{ﬂa+1—>6}.
T7:{d?j—>dij: 1§Z7j§k}
rg = {dijdij11) — digdyg : 1<i <k, 2<j+1<k}

e Rules in the membrane labeled by 3:
19 = {tijur — (LijSuj(r41),M4) buj @ piz = Liu# 5,1 <4,j,u < k,0<r <k}
10 = {tijuk — (ti]‘7in4) buj : pij =].,'LL 7é j, 1 § Lj,u S k}
ry = {tijjr — (tij7in4) dj(r+1) DDy = 1,1<14,5 < k,O <r< k}
ri2 = {tijje — (tij,ing) : pij = 1,1 <1,j <k}
ris ={¢ = cry1: 0<r <2k +1} U{copra — 6}
e Rules in the membrane labeled by 4:
ria = {suirth 0 — (8L E out): 1< ui <k, 0<r <k}

ilur * ikur?

— The partial order relation p over R consists of the following relations on the
rules of R:
e Priority relation in the skin membrane: {ry > ry > r3 > ry > r5}.

Priority relation in the membrane labeled by 2: {r7 > rs}.

Priority relation in the membranes labeled by 3: (.
Priority relation in the membranes 4: ().

Remark 1. Let us observe that the resources initially required for constructing
the P system Py are the following:

— Size of the alphabet: 6(k*).

Intitial number of membranes: 4.
Number of rules: O(k%).

Maximal length of a rule: O(k).
Number of priority relations: O(kS).

3.2 An Overview of Computations

At the beginning, the skin membrane is empty. The membrane labeled by 2 only
contains the object By which is a counter used to dissolve that membrane in the
(a+2)—th step, where a = 2k+4+[lg2k]+(k—1)(k+2)/2. The membrane labeled
by 3 contains the object ¢y which is a counter used to dissolve the membrane
2 in the (2k + 3)-th step. Initially, the membrane labeled by 4 contains: (a)
objects siio (1 < i < k) encoding the states e; of the chain; and (b) objects ¢;;
(1 <14,j < k) encoding the elements p;; of the boolean matrix associated to the
transition matrix of the Markov chain.

In the first 2k + 3 steps one applies rules only in the internal membranes
labeled by 2, 3, and 4. During this (so called) first stage, we determine the
accessibility between states (encoded by the objects b;; meaning that we can

Classifying States of a Finite Markov Chain with Membrane Computing 273

reach e; from e;) as well as the recurrent time of each state (encoded by the
objects d;; meaning that there exists a path from e; to e; with length 7). In
the even steps, the rules of membrane 4 will consume all the objects s, and
some objects t;;, sending to membrane 3 some objects t;;,,. In the odd steps,
only rules in membrane 3 are applied (but not in membrane 4, because there do
not exist objects sy in that membrane), sending new objects ¢;; and objects
Suj(r+1) (With u # j) to that membrane and producing objects b,; and dj,. in
membrane 3. The first stage finalizes in the configuration Coxy3 when the rule
Cok+3 — 0 dissolves membrane 3. In this moment we have some objects ¢;; (with
1 < 4,j < k) in membrane 4, objects dj,,by,; (with 1 < j,u,r < k) and the
object B2i+3 in membrane 2 (notice that in each step of this first stage the rule
Bi — Bi+1 of membrane 2 has been carried out). The skin region is empty.

The second stage begins with the execution of the (2k+4)—th step. During this
stage we eliminate repeated copies of objects b;; and d;; in membrane 2, and we
compute the period of each state (encoded in the second subscript of the objects
d). The rules of membrane 2 permit transforming two copies of the object b;; and
d;; into one copy, and the period of each state e; is calculated by means of the
rules of type rg. For that, we need at most o = 2k+4+ [lg2k]|+ (k—1)(k+2)/2.
steps. This stage finalizes when the rule 8,41 — ¢ dissolves membrane 2 in the
(a 4 2)—th step. This stage is a non-deterministic one.

Finally, the third stage is the output phase, and begins with the execution of
the (o + 3)-step. In this stage the objects b;;b;; are transformed into the objects
a;ja;; by means of the rule r; (meaning that the states e; and e; belongs to the
same equivalence class). When this rule cannot be applied, then the transient
objects are expelled to the environment applying the rules of types ro and rs.
After that, the rule r4 sends the recurrent states and their period to the external
environment. The process finalized when the rule r5 sends the absorbent states.

3.3 Formal Verification

Given a computation C of the P system II(Py), for each m € N we denote by C,,
the configuration of the system obtained after the execution of m steps. For each
label I € {1,2,3,4}, we denote by C,, (1) the multiset of objects contained in the
membrane labeled by [in the configuration C,,. Also, we denote by C,, (env) the
content of the environment of the system in the configuration C,,.

First of all, we show that during the first stage the objects s;; codify the
existence of a path from e; to e; with length r, and the objects ¢;;,, codify the
existence of a path from e, to e; with length » and with e; next to last node.

Lemma 1. For each v such that 1 < r < k we have the following:

(a) If r =1, then for each i,j such that 1 <i,j < k, the object tijio belongs to
C1(3) if and only if there exists a path from e; to e; with length 1 and with
e; being next to last node.
If r > 1, then for each i,j,u such that 1 < i,j,u < k, the object t;j,(r—1)
belongs to Car—1)(3) if and only if there exists a path from e, to e; with
length r and with e; being next to last node.

274

M. Cardona et al.

(b) For each i,j such that 1 < i,5 <k, i # j, the object s;j, belongs to Ca,(4)
if and only if there exists a path from e; to e; with length r.

Proof. We prove the lemma by induction on 7.

— Let us suppose that r = 1.

(a)

Let 4,7 be such that 1 < 7,5 < k.
If tijuo € C1(3), having in mind the composition of the initial configu-
ration, there exists objects s;;0 and ¢;; in Co(4). So, p;; = 1 and (e;, e;)
is an arc of the graph associated with the Markov chain. Hence, there
exists a path from e; to e; with length 1 and with e; next to last node.
Conversely, if there exists a path from e; to e; with length 1 and with
e; next to last node, then p;; = 1. So, the object ¢;; belongs to Co(4).
Having in mind that s;0 € Cop(4), and applying the rules of type ri4 we
have tijiO e Cy (3)
Let 7,4 be such that 1 <i,5 <k, i # j.
Let us suppose that s;j1 € C2(4). Then that object has been produced
by an object t;5,, belongs to C1(3) and applying the rules of type rg.
From a) we deduce that there exists a path from e; to e; with length 1
(and with e; next to last node).

If there exists a path from e; to e; with length 1, then from a) we
deduce that the object t;;;0 belongs to C1(3). Applying the rule of type
rg we obtain that Sij1 € 02(4)

— Let r > 1 and r < k and let us suppose that conditions (a) and (b) hold for
r. Let us show that these conditions hold for » 4 1.

(a)

Let 4, j,u be such that 1 <14, j,u < k.

If the object t;jur belongs to Cor41(3), then in the (27 + 1)-th step the
rules of type r14 has been applied in membrane 4, in order to produce
the object t;jur. Then, the objects sy and t;; must belongs to Ca,(4).
By the induction hypothesis there exists a path from e, to e; of length r.
Having in mind that ¢;; € C,(4), it follows that (e;, e;) is an arc of the
graph associated. Consequently there exists a path from e, to e; with
length r 4+ 1 with e; next to last node.

Let us suppose that there exists a path from e, to e; with length r+1
with e; next to last node. Then there is a path from e, to e; of length r.
By the induction hypothesis, the object s, belongs to Ca,.(4). Moreover,
pi; = 1 because (e;, e;) is an arc of the graph associated, so ¢;; belongs
to Ca,(4). Applying the rules of type ri4, we have t;jur € Cory1(3).

Let 7,4 be such that 1 <i,5 <k, i # j.

If the object s;;(,+1) belongs to Ca,12(4), then there exists u (1 < u < k)
such that the object t,j;» belongs to Ca,11(3). By the induction hypoth-
esis, there exists a path form e; to e; of length r + 1 with e; next to last
node. Then, there exists a path from e; to e; of length r 4 1.

Conversely, let us suppose that there exists a path from e; to e; of
length r + 1. Let u be such that e, is the next to last node of this path.
By induction hypothesis, we have t,;i» € Cort1(3). Applying the rules
of type 79 we obtain that the object s;;(,+1) belongs to Car12(4). O

Classifying States of a Finite Markov Chain with Membrane Computing 275

Lemma 2. For each v such that 1 < r < k we have the following:

(a) There are i, j,u such that 1 < i, j,u < k, tiju—1) € C2r—1(3), sijr € Car(4).
(b) For all i,j,u,z such that 1 <i,j,u,z <k, we have:

tijuz ¢ 027“(3)7 Sijz ¢ C2r—1(4) tl')?j(kil) S 027’(4)

v Vg
Proof. By induction on r. First of all, recall that

Co(4) = {suot’ "™V - 1<, j <k}, Co(3) = {co}.

Let 7,7 be such that 1 < 4,5 < k and p;; = 1. Applying the rules of type
r14 at the initial configuration we have t;;;,0 € C1(3). Then, applying the rules
of type 79 in the second step we have s;;1 € C2(4). Moreover, each object ¢;;
that has evolved in the first step, returns to membrane 4 in the next step. So,
90 € Oy(4), for all 4,5 (1 < 4,5 < k).

Having in mind that in the first step all objects s;0 are consumed, we have
sijz & Ci1(4), for all i,7,z (1 < 4,7,z < k) Hence, t;ju. ¢ C2(3), for all ¢,7,u,z
(1<i,j,u,2z<k).

Assuming the result holds for r < k (r > 1), we prove the result holds for r+1.

By the induction hypothesis, there exist ¢, (1 < 4,4 < k) such that s;5 €
Cr(4). But there is u (1 < u < k) such that ¢,; € C.(4); applying the rules
of type 714 we have we have t;j,» € C2,41(3). Then, applying the rules of type
r9 in the next step we have s,;j4+1) € Ca,42(4). Moreover, each object t;;
that has evolved in the r—th step, returns to membrane 4 in the next step. So,
290 € Oy, y5(4), for all i, 5 (1 < d,5 < k).

Having in mind that in the r—th step all objects s;;, which belong to Cs,(4)
have evolved, we have s;;. ¢ Cory1(4), for all ¢,4,2 (1 < 4,4,z < k) Hence,
tijuz & Corg2(3), for all ¢, j,u, z (1 < i,5,u,z < k). O

Proposition 2. For each i,j such that 1 < i,7 < k we have the following:

(1) If i # j, then the following assertions are equivalent:
(a) There exists a path from e; to e;.
(b) The object b;; belongs to Copy2(3).
(¢) The object b;; belongs to Copy3(2).

(2) The following conditions are equivalent
(a) There exists a path from e; to e; with length j.
(b) The object d;; belongs to Cojy2(3).
(¢) The object d;; belongs to Cojy3(2).

Proof. Let 1, j be such that 1 <i,j <k.

(1) Let i # j and let us suppose that there exists a path from e; to e;. Let > 1
be the length of that path r, and let e,, be the next to last node of that path.
From Lemma 1, we have t,;,—1) € C2r—1(3). Applying the rules of type rg
or r19 we obtain that bi]‘ € 0274(3) Hence bi]‘ € C2k+2(3)-

Conversely, let us suppose that b;; € Cory2(3). Then, from Lemma 2
there exists r (1 > r < k) such that t,;;(,—1) € C2,—1(3). From Lemma 1 we
deduce that there exists a path from e; to e;.

ObViOUSly, bij S Cgk+2(3) < bij € 0219+3(2).

276 M. Cardona et al.

(2) Let us suppose that there exists a path from e; to e; of length j. Then,
there exists a state e, and a path from e; to e, of length j7 — 1, and with
(ew,€;) being an arc of the associated graph. From Lemma 1, the object
tuii(j—1) belongs to Ca;1(3). Applying the rules of type r1; or r12 we have
dij € 02](3) Hence, dij S 02k+2(3).

Conversely, let us suppose that di; € Cag12(3). Then, from Lemma 2
there exists 7 (1 > r < k) such that t,;;j—1) € C2,—1(3). From Lemma 1 we
deduce that there exists a path from e; to e; with length j.

ObViOUSly, dij S Cgk+2(3) if and only if dij S Cgk+3(2). O

Proposition 3. If a =2k + 4+ [lg2k] + (K — 1)(k +2)/2, then:

Cot1(2) ={bsj: 1<14,5<k,i#j, there is a path from e; to e;} U
{dip : 1 <1i,p<k, pisthe period of the state e;} U {Ba+1}-

Coyo(1) ={bsj : 1 <14,j <k,i#j, thereis a path from e; to e;} U
{dip: 1 <1i,p <k, p is the period of the state e;}.

Proof. Applying repeatedly the rules 8; — ;11 (0 < i < «) starting from the
initial configuration, we have fn4+1 € Co41(2).

From Proposition 2 we deduce that in membrane 2 of the configuration Coyy3
we have objects b;;, with different multiplicities, such that there is a path from
the state e; to state e;, and objects d;;, with multiplicity 1, such that there is
a path from the state e; to state e; with length j. Then, applying the rules of
type r¢ in, at most, [lg,k] steps, we get that the multiplicity of each object is
1. Simultaneously, applying the rules of type r7 and (8) in at most [lg k] + (k —
1)(k + 2)/2 steps we produce the objects d;;,, where p is the greatest common
divisor of {dU : dij € C2k+3(2)}~

In the step av+ 2, membrane 2 is dissolved by executing the rule G441 — 6. O

Theorem 3. Let Cy be the final configuration of the computation C of the sys-
tem II(Py). Then:

(a) The state e; is transient with period p if and only if T;p € Cy(env).

(b) The state e; is recurrent (and not absorbent) with period p if and only if
R, € Cy(env).

(¢) The state e; is absorbent (with period 1) if and only if An € Cy(env).

Proof. (a) Let us suppose that e; is a transient state. If the equivalence class
of e; has more than one element, then we can apply the rules of type r; in
membrane 1 of the configuration Cny2 producing objects a;; and aj;. In this
case, there exists r (1 < r < k) such that the object b; belongs to Cy42(1) but
bri ¢ Cot2(1). So, in the (a4 4)—th step the object ; is produced applying the
rules of type 72. Then in the next step (and using the object d;;) we obtain that
Tip € Coqs(env), where p is the period of e; (from Proposition 3).

If the equivalence class of e; is a singleton, then the rules of type r1 cannot be
applied in the configuration Cy42. So, we apply the rules of type ry producing

Classifying States of a Finite Markov Chain with Membrane Computing 277

the object +; that in the next step produces (together with the object d;;,) the
object Tj, in the environment (that is, T;p € Cqra(env)).

Reciprocally, let us suppose that T;, € Cyy4(env)). Then, the object v; must
be generated in order to can apply the rules of types ro and/or r3. If only the
rules of type ro are applied, then there are j,j' (1 < j,j’ < k) such that e; is
accessible from e; and e; is accessible from e;, and e;, e;s are communicating
states. Hence, e; is a transient state whose equivalence class has more than one
object. If the rules of type rs are applied, then e; is a transient state whose
equivalence class is a singleton.

(b) Let us suppose that the state e; is recurrent (and not absorbent) with
period p. Then, the equivalence class of e; has more than one object and there is
no transient state belongs to that class. So, the rules of type 71 will be applied in
the configuration C, 42 and the object v; cannot be produced. Hence, applying
the rules of type r4 in the next configuration we have R;, € Cyya(env).

Reciprocally, if R;, € Cy(env) then the rule a;;d;, — (Rip,out) has been
applied (for some j,p with 1 < j,p < k). For that, the objects a;; and a;; have
been produced and the object v; has not been generated. Consequently, the state
e; is recurrent and its equivalence class has more than one object (that is, it is
not an absorbent state).

(c) Let us suppose that the object e; is absorbent (consequently its period is 1).
In this case, it equivalence class is a singleton. So, there is no j (1 < j < k) such
that b;; and bj; belongs to Ca12(1). Then the rules of type r1 are not applicable
for i. Applying the rule d;1 — (A;1, out) we obtain that A;; € Chy3(env).

Reciprocally, if A;; € Cy(env), then the object d;1 belongs to membrane 1 in
the next to last configuration. So, the objects a;; has not been produced. Then,
the state is recurrent and its equivalence class has only one object. O

Remark 2. Let us note that the number of steps of the computation of the P
system Py is either a + 3 or a + 4. That is, the number of steps is quadratic in
the number of states of the Markov chain.

4 Conclusions

One of the central issues in Markov chain theory is the asymptotic long—term
behavior of Markov chains.

Due to different results concerning the existence (and the uniqueness) of a
stationary distribution, the problem of classification of states is an important one
in the mathematical study of Markov chains and related stochastic processes.

In this paper we give an efficient (semi-uniform) solution of the problem
of classification in the framework of the cellular computing with membranes.
The solution is semi—uniform because for each adjacency matrix of the directed
graph associated with a Markov chain, a specific P system with external output is
designed. The solution is efficient, because it is quadratic in the number of states
of the Markov chain. Furthermore, the amount of resources initially required to
construct the system is polynomial in the order of the Markov chain.

278 M. Cardona et al.

The paper also provides a new example of formal verification of P systems de-
signed to solve a problem (in this case a problem of classification, not a decision
problem), following a specific methodology. These examples are always interest-
ing, for instance, in order to find systematic processes of formal verification in a
model of computation oriented to machines, like the cellular model, a case where
it is well known that the mechanisms of verification are often a very hard task.

Acknowledgement

The third author wishes to acknowledge the support of the project TIN2005-
09345-C04-01 of the Ministerio de Educacién y Ciencia of Spain, co—financed
by FEDER funds, and of the Project of Excelence TIC 581 of the Junta de
Andalucia.

References

1. M. Cardona, M.A. Colomer, J. Mird, A. Zaragoza, A step towards DNA computation
model. Submitted, 2006.

2. M. Cardona, M.A. Colomer, M.J. Pérez—Jiménez, A. Zaragoza, Handling Markov
chains with membrane computing. Lecture Notes in Computer Science, 4135 (2006),
72-85.

3. O. Haggstrom, Finite Markov Chains and Algorithmic Applications. London Math-
ematical Society, Cambridge University Press, 2003.

4. R. Nelson, Probability, Stochastic Processes, and Queueing Theory: The Mathemat-
ics of Computer Performance Modeling. Springer-Verlag, New York, 1995.

5. A.N. Shiryayev. Probability. GTM 95, Springer, 1984.

6. Gh. Paun, Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108-143, and Turku Center for Computer Science-TUCS Report Nr.
208, 1998.

7. Gh. Paun, Membrane Computing. An Introduction. Springer-Verlag, Berlin, 2002.

8. Gh. Paun, G. Rozenberg, A guide to membrane computing. Theoretical Computer
Science, 287 (2002), 73-100.

9. ISI web page: http://esi-topics.com/erf/october2003.html

Partial Knowledge in Membrane Systems:
A Logical Approach

Matteo Cavaliere! and Radu Mardare?

! Microsoft Research - University of Trento
Centre for Computational and Systems Biology, Trento, Italy
matteo.cavaliere@msr-unitn.unitn.it
2 D.I.T, University of Trento
Trento, Italy
mardare@dit.unitn.it

Abstract. We propose a logic for specifying and proving properties of
membrane systems. The main idea is to approach a membrane system
by using the “point of view” of an external observer. Observers (as epis-
temic agents) accumulate their knowledge from the partial information
they collect by observing subparts of the system and by applying logical
reasoning to this information. We provide a formal framework to com-
bine and interpret distributed knowledge in order to recover the complete
knowledge about a membrane system. The proposed logic can be used
to model biological situations where information concerning parts of the
biological system is missing or incomplete.

1 DMotivations

Abstracted as a multi-agent system, a biological system reflects interactive, con-
current, and distributed behaviors and, in general, the complex evolutions of
biological systems. The success in dealing with this complexity depends on the
mathematical model chosen as abstraction of the system.

Consider, for example, the immune system [1]. This is constituted by a net-
work of cells, tissues, and organs that work together to defend the body against
attacks by foreign invaders — microbes, germs, bacteria, viruses, parasites, etc.
The immune system’s job is to keep them out or, failing that, to seek out and
destroy them. The immune system functions due to an elaborate and dynamic
communications network. Millions of cells, organized into sets and subsets, gather
in clouds swarming around a hive and pass information back and forth.

Suppose now that we are interested in modeling the interaction of our body
with a given virus. Excepting the immune system, our body contains also other
subsystems, but we can decide that, for the given situation, all the other parts
are meaningless. So we decide to ignore them. For instance, if we consider the
case in which the virus is already present in our body, the first approximation
of the biological reality will consider a main system (our body) in which are
present two subsystems — the virus and the immune system. Going deeper, the

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 279-297, 2006.
© Springer-Verlag Berlin Heidelberg 2006

280 M. Cavaliere and R. Mardare

first interaction between the two subsystems involves the innate immune sys-
tem, which is just a subsystem of the immune system comprised of hereditary
components that provide an immediate “first-line” of defense to continuously
ward off pathogens. This subsystem is able to annihilate “well-known” viruses.
If this is the real situation, then modeling only the innate immune system in
relation with the virus is enough for comprehending the biological phenomenon.
But if the virus is unknown, then we might need to go deeper with modeling
and, in addition to the innate immune system, to model also phagocytic cells.
These are cells that represents the “second-line” of defence for our body. They
can analyze unknown entities, destroy viruses and learn the structures of the
destroyed entities. In particular, the immune system is able to design special
cells for fighting with peculiar types of viruses. Hence, on this level, the model-
ing have to be more specific representing also other subsystems of the immune
system.

Depending on the complexity of the biological properties we want to consider,
we can go as deep as necessary with representing the biological entities involved.
More complex models provide more accurate information. Still, as the costs of
modeling and simulation grows with complexity of the model, we have to find
the right level of abstraction that gives, with acceptable costs, the information
we are looking for. Observe that in biology, as in all the empirical sciences,
we cannot hope to reach the level of having complete information concerning a
biological phenomenon. Thus, no matter how complex is the model we choose,
there exists always properties requiring a bigger complexity.

In other words, we always work with partial (observed) knowledge about bio-
logical systems and based on this incomplete information we model or simulate
biological phenomena. In this paper we show how it is possible to manage in-
complete information concerning membrane systems. The work done here can
be seen as related to [7] where a formal observer has been introduced to investi-
gate the formal behavior of a membrane system. However in [7] the observer was
mainly used to extend the computing power of the observed device. In this pa-
per, the observer is an epistemic agent able to compute knowledge and is used to
analyze situations in which the knowledge about the observed system is partial,
incomplete or missing.

2 Formal Language Preliminaries

Membrane systems are based on formal language theory and multiset rewriting.
We now briefly recall the basic theoretical notions used in this paper. For more
details the reader can consult standard books, such as [8] and the corresponding
chapters of the handbook [17].

Given the set A we denote by |A| its cardinality and by @ the empty set. We
denote by N and by R the set of natural and real numbers, respectively.

As usual, an alphabet V is a finite set of symbols. By V* we denote the set
of all strings over V. By V™ we denote the set of all strings over V excluding

Partial Knowledge in Membrane Systems 281

the empty string. The empty string is denoted by A. The length of a string v is
denoted by |v|. The concatenation of two strings u,v € V* is written uv.

A multiset is a set where each element may have a multiplicity. Formally, a
multiset over a set V' is a map M : V — N, where M (a) denotes the multiplicity
of the symbol a € V in the multiset M.

For multisets M and M’ over V', we say that M is included in M’ if M(a) <
M'(a) for all a € V. Every multiset includes the empty multiset, defined as M
where M (a) =0 for alla € V.

The sum of multisets M and M’ over V is written as the multiset (M + M),
defined by (M + M')(a) = M(a) + M'(a) for all a € V. The difference between
M and M’ is written as (M — M') and defined by (M — M’)(a) = maz{0, M (a)—
M'(a)} for all a € V. We also say that (M + M’) is obtained by adding M to
M’ (or viceversa) while (M — M') is obtained by removing M’ from M. For
example, given the multisets M = {a,b,b,b} and M’ = {b,b}, we can say that
M’ is included in M, that (M+M') = {a,b,b,b,b, b} and that (M —M') = {a, b}.

A multiset M can be expressed in the forms (a, M(a)) or a™(®) for all a €
V. If the set V is finite, e.g. V = {a1,...,a,}, then the multiset M can be
explicitly described as {(a1, M (a1)), (ag, M (a2)), ..., (an, M(an))}. The support
of a multiset M is defined as the set supp(M) = {a € V | M(a) > 0}. A multiset
is empty (hence finite) when its support is empty (also finite).

A compact notation can be used for finite multisets: if M = {(a1, M (a1)),

(a2, M(az)), ...,(an,M(ay))} is a multiset of finite support, then the string
w = aiw(“l)aéw(“” .. .ablten) (and all its permutations) precisely identify the

symbols in M and their multiplicities. Hence, given a string w € V*, we can
say that it identifies a finite multiset over V', written as M (w), where M (w) =
{a € V| (a,|wl|,)}. For instance, the string bab represents the multiset M (w) =
{(a,1),(b,2)}, that is the multiset {a,b,b}. The empty multiset is represented
by the empty string A.

3 Membrane Systems with Symbol-Objects

We recall the basic notions of membrane systems (also called P systems) with
symbol-objects. The reader can find further details in the monograph [16]. An
updated bibliography of the field can be found at the P systems web-page [18].

Definition 1 (Membrane system with symbol-objects). Given a finite set
of objects O and an infinite set of labels Lab, we consider the following family
of constructs

P= {(l“’(”wjl’wj2?'.' awjm7Rj17Rj27"' aij) ‘.]l € Lab7 fO’f’i = 1m}
where

— p is a membrane structure consisting of m membranes arranged in an hier-
archical structure enclosed in a main membrane, called skin membrane. The
skin membrane separates the system from the surrounding environment; the

282 M. Cavaliere and R. Mardare

membranes (and hence the regions that they delimit/enclose) are injectively
labeled over Laby = {j1,72, ,Jjm} C Lab; we convey to label by j; the
skin membrane.

— Wj,, Wy, -, Wj,. are strings that represents multisets over O associated with
Tegions ji,jo, -+, Jm, respectively.

- R, Rj,, -+ ,Rj,, are finite sets of evolution rules over O, associated to re-
gions ji,jJ2, -+ ,jm, respectively. An evolution rule is of the form u — v,

where u is a string over O and v is a string over {apere, Gout | @ € OYU{ain, |
a € 0,1 C Lab}. The symbols here, out, iny with I C Lab are called target
indications. To simplify the notation the target indication here is omitted.

An element IT = (p,wj, , wj,, - ,wj,., Rj, Rjp,--- , R;,,) € P is called mem-
brane system with symbol-objects, of degree m. We denote by 0 the membrane
system of degree 0. We call atomic membrane system a system a system of de-
gree 1 having either the set of rules empty or the multiset of objects empty; if its
unique membrane (which is also the skin membrane) is labelled by ¢ and R; =)
while its multiset is w; € O*, then we denote it by [w;];; if w; = X and R; # ()
then we denote it by [R;];; if R; = 0 and w; = A we convey to denote it by [0];.

Given a membrane system I, an evolution of Il is a sequence of membrane
systems (Ily, IT1, I, - - -) where Iy = IT and, for ¢ > 0, each IT;;1 is obtained
by applying once one of the associated evolution rules in one of the regions of
II;. Rule and region are chosen in a non-deterministic manner. The remainder
of the system II; (objects not involved in the application of the rule, set of rules,
membrane structure, labeling of the membranes) is left unchanged in I7;44.

The passage from II; to Il;11 using the rule r in region j of II; is called
transition and is denoted by IT; — IT; ;. !

The application of an evolution rule r : w — v € R; in the region j € Labp
means to remove the multiset of objects identified by u from region j, and to
add the objects specified by the multiset v, in the regions specified by the target
indications associated to each object in v. In particular, if v contains an object
a with target indication here, then the object a will be placed in the region j
where the evolution rule has been applied. If v contains an object a with target
indication out, then the object a will be moved to the region immediately outside
the region j (this can be the environment if the region where the rule has been
applied is the skin membrane). If v contains an object a with target indication
iny, with I C Lab, then the object a is moved from the region j and placed in
a non-deterministic way into a region ¢ € I (this can be done only if such region
t € I is immediately inside region j; otherwise the evolution rule u — v cannot
be applied).

We call contents of membrane j in II, the multiset of objects and the mem-
branes (together with their contents) contained in region j of II.

! The reader familiar with membrane systems can notice that we use a sequential
semantics: at each step only a unique rule is executed once. Actually the logic pro-
posed in this paper is very general and can be extended easily to other semantics,
e.g., the maximally parallel one.

Partial Knowledge in Membrane Systems 283

Definition 2 (Membrane composition)

Let IT = (p, wj,, wj,, - ,w;, ,Rj,Rj,, -+, Rj,,) be a membrane system and
1 € Lab— Labp.
We denote by [II]; the membrane system

/ ’
7 :(,U’awkuwkzv"'awkm+1aRk1aRk2a"'7ka+1)
such that

— 1’ is p enclosed into an external membrane labeled by i; the labeling of the
membranes of 1 is preserved in p';

— ki =i and ks = js—1 for s = 2.m + 1; consequently wi, = w;,_, and
Ry, = Ry, _,;

- Wk, =>\, Rkl :(Z),

Ezxample 1. Consider the membrane system II defined by

p=1[[l2]
Ry ={a— b}
Ry = {b— c};
wy = b;

Then [II]3 is the system II’ defined by

Wo=[112h s
R} = Ry = {a — b};
Ry = Ry = {b — c};
5 =0
w'lzwlzb,

wy = we = a;

wh = A

Definition 3 (Parallel composition)

Let IT = (p, w5y, Uj,, - -+ U5, Ry, Ry, -+, Rj,,) and
II' = (1, Vky s Uk + 5 Vkyy s Ry s Riens -+ 5 Ri,,) e two membrane systems such
that j1 = k1 and Labg N Labp = {j1}. We call parallel composition of the two
systems, denoted by II|II', the membrane system

" "
= (/~L y Wiy, Wigy - - 7wl7n+n717Rll7R127... 7Rl7n+n—1)
defined by:

— " is obtained by enclosing into a common external membrane the contents
of the skin membranes of p and i';

284 M. Cavaliere and R. Mardare

— in u” the labeling of the membranes in p and in ' is preserved; consequently
the skin membrane of II" is labeled by 1 = j1 = ky;
— wy, = uj vk, Ry, = Ry, URy,. ?

The intuition behind the parallel composition operator is that it can be used
to divide an entire membrane system in subsystems, where each subsystem can
be recognized/understood by a certain external observer.

Example 2. Consider the membrane systems

II - .
p=[[l2[]s] pw=[[{]s]da]r

w1 = ab w1 = ee

we = cd wy = ccd

w3 = aa Wy = a
Ri={a—b, a—c} Ry ={a—b,a—d}
Ry = {cd — a} Ry ={d— ¢}

Rs; ={a — b,a — d} Rs = {a — b}

Then II|I1’ is the system II"” defined as

=1l [lls]a]x
w1 = eeab

we = cd

w3 = aa

wy = ced

ws = a

Ry ={a—b,a—c,a—d}
Ry = {cd — a}

R; ={a — b,a— d}
Ry={d—c}

Rs = {a — b}.

Let denote by P; the class of membrane systems having the skin membrane
labeled by ¢. Then it is easy to see that the following theorem holds.

Theorem 1. (P, |,[0];) is an Abelian monoid.

Also the following theorem can be easily proved.

Theorem 2. Any membrane system can be composed, by iterating parallel and
membrane composition, starting from atomic membrane systems.

% The definition is correct as Labr N Laby: = {j1}. Notice that, since the labeling of
the membranes is preserved, we have that for s # 1 Ry, and w;, = uk, (wi, = vk,)
are preserved as in the original system I (II’, respectively).

Partial Knowledge in Membrane Systems 285

Ezample 3. Consider the membrane system II presented in Example 2.
The system II can be obtained as

[[ed]2|[R2]2 |1 | [aals|[Ra]s |1 | [abli | [Ri]x

with Ry, Ry and Rs as in II. Clearly [cd]2, [aals, [abl1, [Ri]1, [R2]2, [Rs]s are
atomic membrane systems.

4 Partial Information in Membrane Systems

We want to propose a formal way of playing with partial information about a
(membrane) system in order to decide some global properties. The idea is to
formally describe open systems. An open system for an observer is a system
formed by a known subsystem and an unknown (opened) part about which the
observer does not know anything. So if the observer knows a subsystem S; of a
bigger system S1|S2, then the observer considers as entire system, any structure
of type 51|53, for any possible system Ss3. Hence, the properties that the observer
knows about the entire system are the properties that systems “like” Sp|Sa,
51183, etc. have in common.

Consider again the example, presented in the Introduction, where a virus
attacks our body. We have decided to model a relevant part of immune system,
say I, in relation with the virus v. Hence the model of a body that has been
penetrated by a virus is body = I|v|S, where S denotes the rest of the body (we
have not considered to model the rest of the body in details since the system I
is enough for comprehending the interaction with the virus). Suppose now that
the properties we try to specify do not concern only the subsystem I|v (the one
we have considered) but the whole body I|v|S.

Can we sustain that each property of the system I|v can be stated about the
whole body I|v|S?

For correctly answering to this question, we propose a logic to play with
partial information. Consider a complex biological system about which we have
only partial information. This information is collected by some observers placed
in different points of the system. Each observer analyzes a subsystem. Our logic
develops the framework needed to combine the knowledge of these observers
such that is possible to derive interesting properties about the whole system, even
without having complete information about it. Playing with observers might cost
less then fully investigating the system and it might provide enough information
for deciding on the properties we are interested in. All depends on how we
place the observers and how we combine their knowledge in deriving complex
properties.

Formally, we propose a logic developed in dynamic-epistemic paradigm [9] and
enriched with operators from spatial logics [2,3,5,6]. We call it dynamic epistemic
spatial logic. The syntax allows to express open systems and the knowledge of
observers. By combining the knowledge of different observers we can specify
and verify complex properties about the whole system without having complete
knowledge about it.

286 M. Cavaliere and R. Mardare

In related papers [13,15,12] it has been proposed Hilbert-style axiomatic sys-
tems for different such logics, and it has been proved that they are decidable
against a semantics based on process algebra, even in the cases for which the
classical spatial logics have been proved to be undecidable [4].

5 Playing with Partial Information

In this section we will show how, playing with partial information about a system,
we can derive properties of the whole system. For this we reconsider a classi-
cal example used in epistemic reasoning [9] adapted for a biologically inspired
situation.

Consider a biological system S composed by four disjoint subsystems S =
S1|52]55|S4. In Figure 1 there are four cells S, Sz, S5 and Sy. Each cell contains a
vacuole that can be either normal, having an oval shape as in S3, S4, or abnormal
having a non-circular shape as the vacuoles of S; and Ss. Suppose, in addition,
that the system is analyzed by four observers, each observer having access to
only a subpart of S. Thus observer O; can see the subsystem S3|S3|S4, Oz the
subsystem S3[S4]S1, O3 can see the subsystem Sy|S1|S2 and observer Oy sees
51|S2]S5. Each observer has a display used for making public announcements.

),
A3 e AE 403 =
g n 2954, g n
o1 Oz o1

04 (03
”,‘ 20g %4

Fig. 1. The system S Fig. 2. The perspective of Oy

The observers know that the system S contains abnormal vacuoles and each
observer tries to compute the exact number of them and their positions in the
system. In doing this the observers do not communicate but only witness the
public announcements. Each observer displays 0 until it knows the exact num-
ber and positions of abnormal vacuoles, moment in which it switches to 1. In
addition, the observers are synchronized by a clock that counts each step of com-
putation. Hence, after each “tick“ the observer has to evaluate its knowledge and
to decide if its display remains on 0 or switches to 1. Thus each observer com-
putes information about the whole system by using the partial information it
possesses and by evaluating the knowledge of the other observers (by reading
their displays). If an observer is able to decide the correct number of abnormal
vacuoles and their exact positions in the system, then it succeeded to do this with

Partial Knowledge in Membrane Systems 287

a lower cost then the cost needed for fully investigating the system. Hereafter
we show that such a deduction is possible.

Consider that the real state of the system is the one in Figure 1. And suppose
that we can control only the observer O;. As O; sees the subsystem S3|S5|S4,
it sees an abnormal vacuole in subsystem S5 and normal vacuoles in S3 and
Sy; in Figure 2 it is represented the perspective of O;. But it does not know if
the system S; has a normal or an abnormal vacuole. For O; both situations are
equally possible. Hence, after the first round of computation the display of O
remains to 0. As it concerns observer Os, it sees an abnormal vacuole, in S7, but
it doesn’t know what is in S, thus, after the first round, it will show 0 too.

\ [o] [o]
n-.i 01 n-.i
o2 o2

I%Im I%Im @03

Fig. 3. A hypothetical perspective of Og Fig. 4. The real perspective of Oz

It starts the second round of computation. We come back to our observer,
O1. The observer has seen that, after the first round, the observer Oy has not
succeed to understand the situation (as Oz shows 0 on its display). If the system
S1 would contain a normal vacuole then in the first round O, would have seen
only normal vacuoles, as in Figure 3. Oy also knows that there is at least one
abnormal vacuole. Hence, if this was the case, O; had enough information to
decide, in the first round, that the only abnormal vacuole of the system is in S5.
Consequently 1 had to appear on its display. But this was not the case (07 can
see that by looking to the display of Os). This means that what O2 observed
was the situation presented in Figure 4. Therefore it is possible to decide that
the real situation of the system is the one with an abnormal vacuole in S;. Thus
using only O1 it is possible to compute the real configuration of the system and
then O; will display 1. The example works similarly in more complex situations.

Observe the advantages of this analysis: using only the partial information
available to O; about the system S and judging the behavior of the other
observers, we were able to compute the real configuration of the system. The
observers do not exchange information about S, but only about their level of
understanding (their observations of) S. The rest can be computed. If each
subsystem is very complex, and usually this is the case in biology, then the com-
plete information about the system can be larger then an observer can store or
manipulate.

288 M. Cavaliere and R. Mardare

Note also that the observers do not need a central unit for organizing their
information. Each observer organizes its own information and makes public an-
nouncements about its level of knowledge. They work simultaneously in a dis-
tributed network and only playing with their partial information about S and
with the information about the state of the network are able to derive overall
properties of the system.

The approach fits well with the real situation of biological systems. We work
always with partial information which are collected by some observers as re-
sults of “measuring” different aspects of a biological phenomena. Sometimes
these different “faces” of the same phenomena cannot be integrated in the same
mathematical model, or seeking for a property might involve evaluation of dif-
ferent models. For such situations, a formalized way for automatically reasoning,
as in the previous example, might help. Hereafter we introduce a logic designed
for this purpose.

6 A Logic of Partial Information

As pointed in the previous section, the role of observers in understanding and
manipulating biological information is significant. We present a logic of observers,
called dynamic epistemic spatial logic [13,14,15,12], developed for specifying and
model-checking properties of multi-agent systems. It can be successfully applied
for analyzing membrane systems. Our logic proposes a formal way of combining
and analyzing the information provided by different observers about the same
biological phenomena.

Our logic can be related with spatial logics [3,2,5,6]. For a detailed pre-
sentation of it and for a Hilbert-style axiomatization the reader is referred to
[13,15,12].

6.1 The Syntax of Lops

Suppose that we have a class Obs of observers ranged over by A, B,C. We
enrich the language of propositional logic with knowledge operators indexed by
observers K 4. A statement like K¢ is read “observer A knows ¢”. Then we
can compose more complex epistemic statements. Thus “observer Ay knows that
observer As knows ¢” is formalized by K 4, K a,¢. A formula like KgAK a(¢p —
) — K is interpreted as “if observer A knows ¢ and ¢ — 1 then the observer
knows ”.

In addition to these operators we add some spatial operators meant to describe
the spatial distribution of the subsystems. Anticipating the semantics, we present
the intuition behind these operators.

Formula 0 is meant to characterize the trivial membrane system 0 that might
be ignored in a complex situation®.

3 Some syntaxes of classical logic use 0 for denoting false. This is not the case here.
We use L to denote false.

Partial Knowledge in Membrane Systems 289

Inspired by spatial logics [2,5,6], we introduce the parallel operator ¢ || v
meant to express the situation in which our system can be decomposed in two
(parallel) subsystems, one satisfying ¢ and the other one satisfying .

T will be satisfied by any system, hence it expresses consistency, ” true . The
role of this element of syntax is essential in expressing open systems. As T is a
property that characterizes any system, ¢ || T characterizes any system that has
a subsystem satisfying ¢ and the rest of the system is, possibly, unknown.

By negation, L will be used to express the inconsistency.

We also design operators to express membranes. Thus [¢]; is a property that
characterizes a membrane system [IT]; where IT is a membrane system that has
the property ¢. Similarly we introduce formulas [w;]; and [R;]; that characterize
the atomic membrane systems [w;]; and [R;]; respectively.

As we propose a logic for the studying of membrane systems together with
their evolutions, we allow some modal operators indexed by the transitions of
the systems to express the evolutions of a membrane system. Thus (r;)¢ is an
operator meant to specify the system IT able to perform a transition r;, i.e.
II =5 I, and II' satisfies ¢. These operators are inspired by dynamic logics
[10] and are basic operators in Hennessy-Milner logic [11].

Formally, the language of dynamic epistemic spatial logic Loy is defined as
follows:

Definition 4 (The language). Let Obs be the set of observers, O an alphabet
and Lab a set of labels. We define the language of dynamic epistemic spatial
logic, by the following grammar:

o:=0|T | =9 [ong | [wli [[Rili| [¢)i | ¢l & | (ri)o | Kad
where A € Obs, w € O*, i € Lab and r; is a rule of the set R;.

Definition 5 (Derived operators). In addition we introduce some derived
operators, widely used in dynamic-epistemic logics:

L1 T 2.0V ((~0) A (-w) 3. 6—v (e vy
4 [rle € () (0) 5.1 ~((20) | (-0) 6. Kad ™ Kae
The dynamic modality [r;]¢, the dual operator of (r;)¢, captures the weakest pre-
condition of a transition r; of a membrane system w.r.t. a given post-specification
¢. We have used the square brackets to denote it, as this notation is classical in
dynamic logics (inspired by the box operator of modal logic). It shouldn’t be con-
fused with the same brackets use on membrane systems for denoting membrane
composition.

Formula 1 is meant to describe the situation in which the system cannot be
decomposed into two non-trivial subsystems.

6.2 The Semantics of Lops

In this subsection we introduce a semantics for the presented logic. It will be
defined underpinning on a satisfiability relation II | ¢, that establishes the

290 M. Cavaliere and R. Mardare

condition under which we can affirm that the membrane system IT has (satisfies)
the property ¢.

As introduced earlier, each observer sees a membrane system in P. This mem-
brane system is the “structure” that the observer can recognize in any more
complex system. Hence, for introducing the semantics, we have to devise an in-
terpretation function int : Obs — P that associates to each observer A € Obs
a membrane system int(A) = IT that represents the system that the observer
is able to “recognize”. The intuition is to define the knowledge of the observer
A as the common properties of all systems where A is active, i.e., systems that
contains I1 as subsystem.

Definition 6 (Models and satisfaction). Given a class Obs of observers and
an interpretation function int : Obs — P we introduce the satisfaction relation
by:

IIET always

E-¢iff ¥ ¢

DEAG T ¢ and IT = 4

I\ ¢ || ¥ iff II = IL|II> and I |= ¢, 12 =4

OEOYfII=0

1T [wi]; iff I = [wil;

II'= [Ri]s iff 1T = [Ril;

1 [oli iff 11 = [I'); and II' = ¢

IT = (r;)¢ iff there exists a transition IT = IT' and IT' |= ¢

II E Ka¢ with int(A) = II' iff II = II'|IT" and VII'|IT"" € P we have
H/‘H/// ': (b

Then the semantics of the derived operators can be obtained.
IT = [ri]¢ iff for any I’ such that IT = I’ (if any), II' |= ¢
IT =1 iff there are no systems IT', IT"” with IT = II'|IT"” and IT' # 0 # 11"

II = Ka¢ for int(A) = II' iff either IT # II'|IT” for any II”, or it exists
II'II" such that II'|IT" = ¢

6.3 Expressivity

Open systems: We can exploit the use of T to express properties of open
membrane systems. By an open membrane system we mean a system for which
we know only a subpart and we accept any upper-system of the known part
as possible configuration for the overall situation. For example if our system is
IT = II;|II; and an observer knows only IT;, then for the observer any system
of type II1|113, for any II3 € P, is a possible system II. Hence what is outside
11, is “open information” for our observer. Reconsidering the example in section
5, for Ay, in the initial state, IT was an open system because IT; has (for Aj)
either a normal, or an abnormal vacuole.

If we want to express that a system II is an open system containing a known
subsystem I7; then we can express this by allowing an observer A; € Obs to
see only IIy, i.e. int(Ay) = II. Then II = K4, T means that the system IT is

Partial Knowledge in Membrane Systems 291

an upper system of IT;. Indeed, by our semantics, this means that IT = IT;|II;
and for any II3 € P we have II;|IT5 = T. But the last condition is trivially true,
hence the semantics is equivalent to IT = II;|Il5, where Il can be any system.
Due to this, we can use K4, T to say ”in this system II; is a subsystem”.

We can be more specific and express that any upper system of II; has the
property ¢. We can do this by taking an upper system of I1y, say IT = IT;|I1,
and stating that IT = K 4, ¢, where int(A;) = II;. This is equivalent with saying
that for any IT3 € P we have II3|11; |= ¢.

If we can characterize a membrane system up to identity, we can express that
a system I is an open system containing a known subsystem characterized by
¢ also without using the epistemic operator, by IT = ¢ || T. Indeed, w.r.t. our
semantics this means that IT = IT;|II; and II; |= ¢, II; = T. As ¢ satisfies the
known system and T can be stated about any system IIs € P we obtain that
any system of type 11|13, for any I3 € P satisfies ¢ || T.

Characteristic formulas: Using our logic we can define formulas that will fully
identify a membrane system. Recall Theorem 2 stating that each membrane
system can be decomposed, by using parallel and membrane composition, in
atomic membrane systems. We show further how, by induction in top of atomical
membrane systems, we can define characteristic formulas for any membrane
system.

A characteristic formula of a membrane system IT have to be a formula of our
logic ¢ such that

—II'Eon
— if IT' |= ¢y then I’ = IT

We define such formulas inductively on structure of I7.

de de
1.go =0 3. = bn || o
def def
2. Py, de[[UJ]]i 4. ¢um, = bl
2. ¢ir), = [R]:

Theorem 3. Giving an arbitrary membrane system II, the formula ¢ is a
characteristic formula for II.

The fact that we can define characteristic formulas for membrane systems open
the possibility to project any semantical problem in syntax. Thus, if we want
to verify that the system IT has a property %, i.e. II |= 1, we can project this
problem in syntax where it is equivalent with - ¢ — 1, where we denoted
by ¢ the characteristic formula of IT as before. Now the problem IT = v is
equivalent with proving ¢ — v with the axioms of our logic.

Similarly, we can express the fact that between IT and II' there exists a
transition IT - IT’ by stating - ¢ — (r3)¢m. Now F ¢rp — (ri)ém: can be
proved from the axioms iff the transition IT — IT’ exists. On this direction we
can also imagine more complex situations. Consider, for example, that we have
the system IT and we want to know if, after doing the transitions labeled by r;

292 M. Cavaliere and R. Mardare

then s, the ¢, it will reach a state (a membrane system) that will have a subpart
satisfying . This can be syntactically said by F ég — (ri){s;){ts)(@ || T).
Indeed 1 || T describes a system having a subsystem that satisfies ¢. Then the
dynamic operators prefixing it, (r;)(s;)(ts)(¢ | T), means that the system will
reach the state satisfying v | T only after it performs the transitions labeled by
T;,85,ts in this order.

Validity: The presented syntax allows to express the validity of a property in
a class of membrane systems having the same external membrane i, i.e. the
property is satisfied by any of these systems. We can do this by using a “blind
observer” | i.e. an observer A’ € Obs that sees only the trivial system embedded
in 4, int(A") = [0];.

Indeed, the epistemic operator K 4/ has the following semantics.

IT = Kag iff for any II"” € P; we have IT" |= ¢.
This is so because, if a system IT has the property K /¢ then ¢ is satisfied by
any system IT" € P that can be decomposed in [T’ = [0];|II”, i.e. IT" must have
the skin membrane ¢, hence II' € P;. But II’ has the property II'|[0]; = IT’, as
[0]; is the null element of the monoid (P;, |). Hence ¢ is satisfied by any system
with the skin ¢, i.e. it is a valid property over P;. Thus we can encode, in syntax,
the validity of a property.

Consequently, K4/ T is a validity, as [0]; is a subsystem of any system in P;,
11 = 11][0}..

Satisfiability: Also the satisfiability of a property can be encoded in the syntax.
We say that a property is satisfiable if it exists at least one membrane system
having this property. For this purpose we use the dual of the knowledge operator
for the blind observer K 4/ (as before we assume that int(A4") = [0];).

IT = K 4 ¢ iff it exists a membrane system 1”7 € P; such that I[I” = ¢

Indeed, if a system IT satisfies K 4/¢ then either IT # IT’'|[0]; (this is not the case
as always IT = II|[0];) or it exists II" such that IT”|[0]; = ¢. But II"|[0]; = 11",

hence it exists a system IT” € P; that satisfies ¢ and vice versa. Thus K 4/¢
provides a way to encode, in syntax, the satisfiability of a property.

6.4 (Some) Axioms, Rules and Theorems

In [13,14,15,12] it has been introduced a Hilbert-style axiomatic system for dy-
namic epistemic spatial logic. We present further some interesting axioms and
theorems that can offer an idea about what can be specified and proved using
our logic.

Axiom A 1. F [¢]; || [0]: < [¢]:

The previous axioms states that an empty membrane system contained in mem-
brane ¢ do not come with extra properties if it is considered as a subsystem of a
system having the skin 7. Hence, such a subsystem is “transparent”.

Partial Knowledge in Membrane Systems 293

Axiom A 2. F¢ || —] ¢

Axiom A 3. E (@[¢) [p—=ol (] p)

These entail that || organizes an Abelian monoid structure.
Rule R 1. Ifk ¢ — o thenb o || p— 9 || p.

This rule establish the monotonicity of parallel composition.
Axiom A 4. F[ri](¢ — ©) = ([r:]¢ — [ri]v)).

This axiom is the (K) axiom well-known in modal and dynamic logics which,
together with the next rule of necessity shows that, indeed, our operator is an
authentic modal operator.

Rule R 2. IfF ¢ then I [r;]¢.
Axiom A 5. F ((ri)@) || ¥ — (ri)(¢ ||).

If a subsystem I1; of a system II = II;|II; can do a transition r; and further
it satisfies ¢ while its counterpart Ils satisfies v, then the system II can be
described as able to perform a transition r; thus passing to a system satisfying

[l .
Axiom A 6. b Ko A Ku(d—) — Katp

This axiom A6 is the classical (K)-axiom stating that our epistemic operator is
a normal one. It states that if an observer A knows ¢ and that ¢ — 1 then it
knows 1. It is an usual axiom of knowledge [9].

Axiom A 7. - Kap — ¢

Also this axiom is classic in modal and epistemic logics — the axiom (T) —
necessity axiom. It states that the knowledge of any observer must be true,
i.e., an observer cannot know something that is not true.

Axiom A 8. + KA¢ — KAKAd).

Also axiom A8 is well known in epistemic logics. It states that our epistemic
agents (observers) have the positive introspection property, i.e., if an observer A
knows something then it (i.e., the observer) knows that it knows that thing.

Axiom A 9. + KAT — (—|KA¢ — KAﬁKA(b)

Axiom A9 states a variant of negative introspection, saying that if an observer
A is active (the system that the observer knows is a subsystem of the whole
system) and if the observer does not know ¢, then the observer knows that does
not know ¢. Negative introspection is also present in classic epistemic logics.

Rule R 3. Ifk ¢ then - Ko T — Ka¢.

294 M. Cavaliere and R. Mardare

Rule R3 states that any active observer knows all the tautologies. Also in this
case we deal with a well known epistemic rule, widely spread in epistemic logics.
But our rule works under the assumption that the observer is active.

In [13,15,12] we present a complete axiomatic system and we prove many
theorems in it. Hereafter we will sketch some soundness proofs for the previous
axioms to clarify the intuitions that motivates the choice of them. Similarly all
the axioms can be proved to be sound.

Theorem 4 (Soundness of axiom A5). &= ((r;)¢) || ¥ — (ri) (¢ || ¥)

Proof. If I = ((r:)¢) || ¥, then II = II1|Il5, II) = (r;)¢ and IT> = 9. So
311, =5 IIf and I} = ¢. So 3T = II1|Il, = II' = IT{|II; and IT' = ¢ || 4.
Hence IT = (r;)(¢ || ¥).

Theorem 5 (Soundness of axiom A6). = K 9 A Ka(¢ —) — Katp

Proof. Suppose that IT = K¢ and that IT = Ka(¢ — 1), where int(A) = II;.
Then IT = II|II; and for any I’ we have II1|II' = ¢ and I |II' = ¢ — 9.
Hence for any such IT|II" we have I|II' |= 4 and because II = II;|II; we
obtain that IT | K.

Further we present some meaningful theorems that can be derived with our
system.

Theorem 6. - K ¢ — K4 T.
This theorem says that an observer knows something only if it is active.

Theorem 7 (Monotonicity of knowledge). If + ¢ — 1 then + Kad —
Kat

The knowledge is monotone, meaning that if a property ¢ guarantees a property
1 then any observer that knows ¢ knows also 1.

Theorem 8 (Consistency of knowledge). - K¢ — —Ks—¢.

This theorem states that the knowledge of an observer is always consistent; the
observer cannot know ¢ and —¢.

Theorem 9 (Ontological dependency). If int(A) = II1|I1z, int(Ay) = II1
then = KaT — Ka, T.

If the system associated to observer A is a subsystem of the system associated
to observer A, then the activation of observer A implies the activation of observer
Ay

For more interesting theorems, the reader is referred to [13,15,12], where, for
this logic, it is also developed a semantics on process algebras proved to be sound
and complete against the same axiomatic system.

Partial Knowledge in Membrane Systems 295
7 A (Simple) Case Study

Consider the membrane system defined as:

II : ' .
p=[[l2[ls[lah p=[ll2[lsh p"=[llah

UJ1=>\ w1=>\ w1=>\

Wy = a Wo = Wy = C

'lUg:b ’w3:b

Wy = C

R1:{T/26—>bin4} R1:{7’/Ib—>bin4} R1:{7’/Ib—>bin4}
Ry ={r":a — bout} Ry ={r":a — bout} Ry={r"V :b — cour}
Ry ={r"":b— aou} Ry ={r"":b— aout}

Ry={r"V 10— cour}

Obviously IT = II'|II". Suppose now that we have an observer A € Obs
that can see only the membrane system IT’, i.e., int(A) = II'. Hence, for such
observer, the system IT is an open one, as A can see the subsystem I’ and, for
the rest, A accepts any other system as a possible one.

Suppose now that, using the knowledge of A, we want to compute the truth
value of the following property: if I contains a membrane 4 then, eventually, it is
possible to send an object b to membrane 4 (more exactly after two transitions).
We can express this by stating (and proving) that the next formula can be
derived, as axiom, from the presented axiomatic system.

FEAT = Ka([[Tla (I 7T 1T =) D) (00 | T 11 T))

Indeed, the main precondition K4 T ensures that the observer A can see some-
thing in the system IT (i.e., I’ is a subsystem of IT). This implies that A knows

[T0a Il Th I T = () () ([101a | TTa 11 T)

We can read the knowledge of A as: if [[T]4 || T]1 || T, meaning if the
membrane 1 contains a membrane 4 and maybe something else then

() (ry) ([0 1 7T 11 T)-

The fact that we are not interested in what membrane 4 contains it is expressed
by the firsts two T, while the fact that membrane 1 might also contains other
things it is specified by the second T.

Now, this post condition can be read as: the system can use the rule r” in
region 2 (which sends an object b to region 1), then it can apply the rule r’
in region 1 (because now, in region 1 there is one b) and after doing these two
transitions, we obtain a membrane system having membrane 4 inside membrane
1 and region 4 contains the object b. The two T are used for specifying the fact
that in region 4, as well as in region 1, might be also other things in which (in
this case) we are not interested in.

296 M. Cavaliere and R. Mardare

Following these steps the specified property can also be proved inside the
syntax of the presented logic.

The important point is that we have succeeded to play with partial infor-
mation without using a complete description of the system II, but only using
the “point of view” about the system of the observer A. Moreover, the specified
property is true not only for the system I7, but also for any other system which
looks to A “indistinguishable” from I7, i.e., any system of type IT'|IT"" where
IT"" is an arbitrary membrane system.

Indeed, if II"" does not contain membrane 4, then

Ka([[TIa I TT 1T =) rn) ([0ola [TT 11 T))

is still true, as [[T]a || T]1 || T is false, and in classic propositional logic false
implies anything. From the other side if IT"” contains a membrane 4, then does
not matter what else it contains, the system IT'|II"" it is still able to send a b in
membrane 4 in two transitions, as just shown.

8 Conclusion

The logic we have proposed allows us to specify and formally prove properties of
open membrane systems or, in general, properties that involve partial knowledge.
Such properties cannot be formally described (in an “easy” way) by using the
classic theory of membrane systems. The main idea of the presented logic is
that it allows the analysis of the partial knowledge by collecting the partial
information collected by observers of a membrane system. As showed in the
example presented in Section 5, the logic allows to compute information by using
logical reasoning on the information collected by the observers (even if they do
not communicate each other). Sometime, using the presented logical tools, it is
possible to interpret the “behavior” of the single observers for understanding the
information we are looking for. Since this is done is a “distributed” fashion, this
type of analysis has a computational price much smaller then the one needed for
an analysis of the entire system.

References

1. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter: Molecular Biology
of the Cell. Garland Publishing, Inc., 2002, fourth edition.

2. L. Caires, L. Cardelli: A Spatial Logic for Concurrency (Part I). Information and
Computation, 186, 2 (2003).

3. L. Caires, L. Cardelli: A Spatial Logic for Concurrency (Part II). In Proceedings of
CONCUR’2002, LNCS 2421, Springer-Verlag, 2002.

4. L. Caires, E. Lozes: Elimination of Quantifiers and Decidability in Spatial Logics
for Concurrency. In Proceedings of CONCUR’2004, LNCS 3170, Springer-Verlag,
2004,

5. L. Cardelli, A.D. Gordon: Anytime, Anywhere: Modal Logics for Mobile Ambi-
ents. In Proceedings of the 27th ACM Symposium on Principles of Programming
Languages, 2000.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Partial Knowledge in Membrane Systems 297

L. Cardelli, A.D. Gordon: Ambient Logic. Mathematical Structures in Computer
Science, to appear.

. M. Cavaliere, P. Leupold: Evolution and Observation: A New Way to Look at

Membrane Systems: Proceedings WMC2003, LNCS 2933, Springer-Verlag, 2004.

. J. Dassow, Gh. Paun: Regulated Rewriting in Formal Language Theory. Springer-

Verlag, Berlin, 1989.

. R. Fagin, J.Y. Halpern, Y. Moses, M.Y. Vardi: Reasoning about Knowledge. MIT

Press, 1995.

D. Harel, D. Kozen, J. Tiuryn: Dynamic Logic. MIT Press, 2000.

M. Hennessy, R. Milner: Algebraic Laws for Nondeterminism and Concurrency.
Journal of ACM, 32, 1 (1985).

R. Mardare: Logical Analysis of Complex Systems: Dynamic Epistemic Spa-
tial Logics. PhD Thesis, DIT, University of Trento, Italy, 2006 (available from
http://www.dit.unitn.it/~mardare/publications.htm).

R. Mardare, C. Priami: Decidable Extensions of Hennessy-Milner Logic. 26th In-
ternational Conference on Formal Methods for Networked and Distributed Systems,
FORTE’06, LNCS, Springer-Verlag, 2006.

R. Mardare, C. Priami: Model Checking Dynamic Epistemic Spatial Logics. Tech-
nical Report DIT-06-009, Informatica e Telecomunicationi, University of Trento,
2006.

R. Mardare, C. Priami: Dynamic Epistemic Spatial Logics. Technical Report,
03/2006, Microsoft Research Center for Computational and Systems Biology,
Trento, Italy, 2006.

Gh. Paun: Membrane Computing. An Introduction. Springer-Verlag, Berlin, 2002.
G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages. Springer-Verlag,
Berlin, 1997.

The P Systems Web Page: http://psystems.disco.unimib.it.

Tau Leaping Stochastic Simulation Method
in P Systems*

Paolo Cazzaniga', Dario Pescini', Daniela BesozziZ, and Giancarlo Mauri!
! Universita degli Studi di Milano-Bicocca
Dipartimento di Informatica, Sistemistica e Comunicazione
Via Bicocca degli Arcimboldi 8, 20126 Milano, Italy
cazzaniga/pescini/mauri@disco.unimib.it
2 Universita degli Studi di Milano
Dipartimento di Informatica e Comunicazione
Via Comelico 39, 20135 Milano, Italy
besozzi@dico.unimi.it

Abstract. Stochastic simulations based on the 7 leaping method are
applicable to well stirred chemical systems reacting within a single fixed
volume. In this paper we propose a novel method, based on the 7 leaping
procedure, for the simulation of complex systems composed by several
communicating regions. The new method is here applied to dynamical
probabilistic P systems, which are characterized by several features suit-
able to the purpose of performing stochastic simulations distributed in
many regions. Conclusive remarks and ideas for future research are fi-
nally presented.

1 Introduction

Stochastic modeling is recently gaining more attention in the study of biologi-
cal systems because “noise” and discreteness play an important role in cellular
processes involving few molecules. Many experimental evidences can be found in
literature today, such as, e.g., [9,3]. Several examples about stochastic modeling
in biological systems, like signal transduction pathways, or the functioning of
transcription and translation machinery, can be found in [17,26] and references
therein.

It is well known that it is possible to exploit stochastic algorithms to accurately
describe the behavior of biological systems, though these approaches lack of
computational efficiency. Many new algorithms have been proposed to speed
up the computation, trading time for accuracy. A common limitation to many
of these approaches is the single volume hypothesis: all the chemical reactions
occur within a well mixed single volume at constant temperature and pressure.
Here we want to introduce a new stochastic approach in the framework of P
systems [20] — exploiting their topological structure and other features — as a
novel tool for the modeling of multivolume complex systems. In the following

* Work supported by the Italian Ministry of University (MIUR), under project PRIN-
04 “Systems Biology: modellazione, linguaggi e analisi (SYBILLA)”.

H.J. Hoogeboom et al. (Eds.): WMC 7, LNCS 4361, pp. 298-313, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Tau Leaping Stochastic Simulation Method in P Systems 299

we will assume that the reader is familiar with basic notions on P systems;
for further information we refer, e.g., to [21,8] and to the P systems web page:
http://psystems.disco.unimib.it.

The stochastic simulation algorithm (SSA), introduced by Gillespie in [12], is
currently used as the reference procedure for performing stochastic and discrete
simulations of various biological systems (see, e.g., [1,11,18]). It is an exact nu-
merical simulation method that keeps track of every reaction event occurring
in the system. On the other hand, many realistic problems cannot be efficiently
solved by using it, since the load of computer work is sometimes very high.
To speed up the SSA, Gillespie introduced in [13] the 7 leaping method as an
approximate simulation strategy. Using Poisson random numbers, it is indeed
possible to leap over many reaction events in a way that well approximates the
exact stochastic simulation.

The SSA, as well as the 7 leaping method, are only applicable to well stirred
chemical reaction systems within a single fixed volume, at constant temperature.
In order to overcome this limit, in this paper we introduce a new method which
exploits the structure (formed by several volumes) and the communication fea-
tures of P systems: using a modified 7 leaping procedure, we can then simulate
both the behavior of every volume, as well as the behavior of the whole system.

P systems were introduced in [20] as a class of distributed parallel computing
devices, inspired by the structure and the functioning of living cells. The basic
model consists of a structure composed by several membranes, which delimit
regions and can contain objects, evolving in accord to given evolution rules. In
one step of a computation, all regions are simultaneously processed by using the
rules in a nondeterministic and maximally parallel manner, and at each step
all the objects which can evolve should evolve. All the evolved objects are then
communicated to the regions specified by a target indication associated with each
rule. A computation device is obtained, starting from an initial configuration and
letting the system evolve.

Many different classes of P systems as computing devices have been proposed
[21]. More recently, P systems have been applied in various research areas, rang-
ing from Biology to Linguistics to Computer Science, see, e.g., [8]. In this paper
we use membrane systems as modeling tools and, in particular, we consider dy-
namical probabilistic P systems (DPPs), a stochastic class introduced in [23,24]
for the analysis and simulation of the behavior of complex systems. DPPs are
discrete and stochastic models, where the probability values associated with
the rules change during the evolution of the system. The evolution of DPPs is
achieved using a strategy that is similar to the SSA. Moreover, DPPs can be
used to tackle the problem of maximal parallelism, a basic feature of P systems
which can actually be far from reality in many application cases. Details about
DPPs and examples of simulated systems can be found in [22,23,24].

This paper is structured as follows. In Section 2 we recall some 7 leaping
stochastic algorithms, we describe the 7 leaping procedure and show some results
in order to test its accuracy and efficiency. In Section 3 we introduce the new 7
leaping procedure in the framework of DPPs and we present the results obtained

300 P. Cazzaniga et al.

by the simulation of a benchmark test case. We conclude with some remarks on
possible extensions of our work.

2 Gillespie’s Stochastic Simulation Methods

In this section we explain how the 7 leaping selection procedure works, we present
the description of an implementation of the algorithm and we show some results
in order to prove the accuracy and the efficiency of this method.

The 7 leaping method, first introduced by Gillespie in [13], is used to speed
up stochastic simulations where, besides keeping track of every reaction event
(as in SSA [12]), one also selects a leap interval where more than one reaction
can be fired.

Several improvements of the 7 leaping have been proposed by Gillespie and
Petzold [14] in order to improve the strategy of selecting the size of the 7 leap.
Tian and Burrage [25] and Chatterjee et al. [7] introduced a binomial T leaping
to avoid the possibility of producing negative concentrations of the chemical
species. Also Cao et al. [4] modified the original T leaping procedure to work out
the negativity problem.

All these forms of 7 leaping are lacking in two parts: first, they violate the
leap condition [13] since, during the leap, the estimated change of the propensity
function is bound by a fraction € (that is, a pre-specified error control parameter
0 < e < 1) over the sum of all propensity functions. In this way, any propensity
function that has a relatively small value will be allowed to change by a relatively
large amount (the definitions of propensity function and leap condition will be
given in Section 2.1). Second, the 7 leaping selection requires the evaluation of
M? auxiliary quantities at each step, where M is the number of reactions in the
system.

To avoid these problems, Gillespie et al. [5] introduced a new 7 selection
procedure. This procedure (to which we refer in this paper) is more accurate
than the previous ones since it satisfies more closely the leap condition, bounding
in a uniform manner the relative changes in the propensity functions. Moreover,
it is faster than the previous ones because the number of auxiliary quantities
to be computed increases linearly, instead of quadratically, with respect to the
number of reactant species.

2.1 Tau Leaping

We recall here the fundamental hypothesis and main definitions needed to de-
scribe the 7 leaping procedure as presented in [5]. Let X be a well stirred sys-
tem in thermal equilibrium consisting of N molecular species S, ..., Sy, which
can interact through M chemical reaction channels Rj,..., Rp. The vector
X(t) = (X1(¢),..., Xn(t)), where X;(t) is the number of molecules of the species
S; at time ¢, describes the state of the system at time ¢. Let I = {1,..., N} and
J = {1,..., M} be, respectively, the sets of indexes over the species and the
reaction channels sets.

Tau Leaping Stochastic Simulation Method in P Systems 301

The probability that a reaction R;, with j € J, will occur in the next in-
finitesimal time interval [t,t + dt) in the system state x = X(¢) is given by
a;(x)dt, where a;(x) is called the propensity function of R; and is defined as
a;(x) = hj(x)c;, being h;(x) the number of distinct reactant molecules com-
binations and c¢; the stochastic rate constant associated to R;. The changes of
species populations are ruled by the state change vector v; = (vij,...,vn;),
J € J. The element v;; of v; represents the multiplicity change of the species S;
due to reaction R;. Given the above system definition, the 7 leaping algorithm
can be described as follows.

The aim of the 7 leaping procedure is to fire more than one reaction for each
time increment [¢, ¢+ 7). The finding of the exact probability distribution of the
rules applications, within a generic step of length 7, is a hard task to solve. A
possible solution is to approximate the exact behavior of the system, bounding
the changes in the reactions propensity functions; this has, as a consequence, a
limitation of the time increment. Chosen the 7 value, it is then possible to guess
the occurring reactions using a Poisson distribution.

Given the state x of the system X, let K; (7, x,t) be the exact number of times
that a reaction R; will be fired in the time interval [¢,¢ + 7), so that K(r,x,1)
is the exact probability distribution vector (having K;(r,x,t) as elements). For
arbitrary values of 7, it is difficult to compute the values of K;(7,x,t). On the
contrary, if 7 is small enough that the change in the state during [¢,t + 7) is so
slight that no propensity function will suffer an appreciable change in its value
(this is called the leap condition), then we can evaluate a good approximation of
K(1,x%,t) by using the Poisson random variable with mean and variance a,;(x)T.

So, starting from the state x and choosing a value 7 that satisfies the leap
condition, we can update the state of the system at time ¢t + 7 according to:

M
X(t+r)=x + Y v;Pia;(x),7) (1)

Jj=1

where P;(a;(x),), for each j € J, denotes an independent sample of the Poisson
random variable with mean and variance a;(x)T.
Each iterative step of the algorithm is composed by four stages:

1. Generate the maximum changes of each species that satisfy the leap condi-
tion.

2. Compute the mean and variance of the changes of the propensity functions.

Compute the leap value 7.

4. Toss the reactions to apply.

bt

Hereafter, we describe in detail the motivations and the aims of each of the
four stages.

1. Satisfying the leap condition. The procedure for the selection of 7 is ac-
complished in order to bound the relative changes in the molecular populations,
in such a way that the relative changes in the propensity functions will be all
bounded - during the 7 interval - by a small value ¢ (0 <& < 1).

302 P. Cazzaniga et al.

Let A;X; be the change in the population X; in the time interval [¢,¢ + 7).
Given the state x and its projections z; = X;(¢), the leap condition is:

|A-X;| < max{ex;, 1} Viel, (2)

where the values ¢; = ¢;(e,z;) are chosen so that the relative changes in the
propensity functions will be all bounded, at least, by e.

To do that, first determine, for each ¢ € I, the highest order of reaction in
which species S; appears as a reactant (denoted by HOR()). Then compute:

€
E; = 3
gi ®)
where g; = g;(z;) is defined as follows:
1. if HOR(i) = 1 then ¢g; =1
2. if HOR(i) = 2 then
2 if Ry : S;S, — ... withi#k
gi = 1
(2+) lfRZSZSZ—>
Xr; — 1
3. if HOR(i) = 3 then
3 if Ry : S;SkS; — ... withi#£k#I
3 1 . .
gi = 2(24-1‘1_1) lfRZS,SZSk—) Wlthl#k

1 2
xTr; — 1 xTr; — 2
The g; values corresponding to reactions having HOR > 3 can be easily
computed by taking into account the combinatoric of the species involved in the
reactions.

2. Compute mean and variance. To compute the largest value of 7 that
satisfies the leaping condition (2), we need to evaluate two auxiliary quantities:
the mean and the variance of the expected change in the propensity functions.

Referring to the basic 7-leaping formula (1), it is possible to consider the
quantity defined in (2) to be:

AXi= > viPilaj(x),7) Viel, (4)
J€EJIner

where J,. denotes the set of noncritical reactions.

A critical reaction is a reaction with positive propensity function such that a
small number of firings is currently left before exhausting one of its reactants.
All the other reactions are named, instead, noncritical reactions. It is clear that
the set of reactions J is the direct sum of the critical J., and noncritical J,.,

Tau Leaping Stochastic Simulation Method in P Systems 303

reactions sets: J = Jo ® Juer. The motivations of the partition and the choice
of j € Jper in (4), can be found in [5].

As previously said, the Poisson random variables P;(a;(x),7) on the right-
hand side of Equation 4 are statistically independent and have mean and vari-
ance a;j(x)7. Hence, the mean and variance of their linear combination can be
computed as follows:

(A X)) = Y wyla; ()], var{AXi} = Y vfla;(x)7] (5)

j€Iner J€JIner

for all i € I. Hence, following the same reasoning that was used in the 7 selection
introduced in [14], it is possible to consider the bound given in Equation 1
substantially satisfied if it is simultaneously satisfied by the absolute mean and
the standard deviation of A, X;:

|A- X;| < max{e;x;, 1}, \/Ua’I“{A-,—XZ‘} < max{e;z;,1}, (6)

for all ¢ € I.
Now, substituting formulas (5) into conditions (6) we obtain the following
bounds on 7:

maxz{e;x;, 1} max{e;x;,1}>

T< T<
| Zjetjnm‘ Uijaj (X)| ’ ZjeJncT U'izjaj (X)

(7)

for alli € I.
Finally, it is possible to compute, as described in [14], the two quantities:

pi(x) = Z Uijaj(x)v Viel, (8)

J€JIner

o2(x) = Z vfjaj(x), Viel, (9)

J€Iner

where we still have the restriction on the noncritical reactions J,,, due to the
conditions of the modified non-negative Poisson 7-leaping [5].

3. Compute the 7 value. The leap length is obtained substituting Equations
(8,9) in (7):

i€l ()l of(x)

- min { max{ex;/gi, 1} mazx{ex;/g;, 1}> }7 (10)

where g; is obtained by Equation 3.

It is also possible to estimate the mean u;(x)7, and the standard deviation
\/ JJZ(X)T of the expected change in the propensity function a;(x) in the time
increment 7. Formula 10 requires that these quantities would be bounded by
ea;(x) for j € J , thus satisfying the leap condition.

4. Tossing the reactions. The last stage consists in the sampling of random

numbers according to the Poissonian distribution P(a;(x),7) with mean and
variance a;(x) 7.

304 P. Cazzaniga et al.

2.2 The Algorithm

In this section, we introduce the algorithm used to compute the value of 7 as
described in Section 2.1. We recall here that we are considering the system X
with N molecular species interacting through M chemical reaction channels,
where the vector x describes the state of the system and the dynamic is ruled
by the state change vectors v;.

The algorithm works, for each iterative step, as follows:

Locate the set of all critical reactions.

Compute the quantities y; and ;2.

Select the value of 7/ as indicated in Equation (10).

If 7" < n/ag, where ag = 3~ ; a;(x), then execute an SSA step as described

in [12] and go to step 1, otherwise go to the next step. The factor n is usually

set to a reasonable value (n = 10 in the following simulations).

5. Compute the sum of the propensity functions of all critical reactions, denoted
by a§(x).

6. Generate 7" = 1/a§(x) - 1/rnd, where rnd is a value randomly chosen from
the uniform distribution over the unit interval (0, 1).

7. If 7 < 7" then 7 = 7/, and:

Ll s

— For all critical reactions R; set the number of firings k; = 0.
— For all noncritical reactions R; generate k; as a sample of the Poisson
random variable P(a;(x),) with mean a;(x)7.

8. Else if 7/ < 7/ then 7 = 7", and:

— Select one critical reaction R; to be fired during this step and set k; = 1;
for all other critical reactions R; set k; = 0.

— For all noncritical reactions R; generate k; as a sample of the Poisson
random variable P(a;(x),) with mean a;(x)7.

9. Update the state of the system: X (¢ + 7) = X(¢) + >_;c s kj - vj, and check
the termination condition ¢ < t,,4z-

During step 1, the procedure identifies the set of critical reactions, which will
be used in steps 5 and 6 to avoid the possibility to obtain negative multiplicities
of the species. In step 2 the quantities needed to obtain the largest value of 7/
(step 3) that satisfies the leap condition are computed. If this value (step 4) is
less than a multiple of 1/ag, then an SSA step is executed because, given the
actual state of the system, it is more accurate and efficient than a 7-leap step.

Steps 5 and 6 generate a second candidate leap 7’ that estimates the time of
the next critical reaction.

If 7/ is smaller than 77, then some noncritical reactions and no critical reac-
tions will be executed during the leap. Otherwise, several noncritical reactions
plus one critical reaction will be executed.

Finally, step 9 updates the state of the system and checks if the current
system time ¢ exceeds the prescribed simulation time t,,4.. If the condition
holds, terminate the execution, otherwise go to step 1.

Tau Leaping Stochastic Simulation Method in P Systems 305

2.3 Results

In this section we present some results in order to show the accuracy and effi-
ciency of the 7 leaping procedure presented above. We have simulated a simple
system of consecutive reactions

AR BB (11)

using both the 7 leaping method and the SSA, in order to compare the perfor-
mances of the two procedures.

Figure 1 shows the behavior of the system (11) simulated starting from a
population of 1000 individuals of species A; the stochastic constants used for the
simulation are k; = 0.1s7! and ky = 0.0255!. For the simulation with 7-leaping
method, € = 0.03 was used.

1000 T T T T T

SSA ——
tau leaping - :

800

600

Individuals

400

200

0 - 1 1 1 _ 1 4 |
0 10 20 30 40 50 60 70 80

Time [s]

Fig. 1. Consecutive reactions system

Figure 2 shows the histogram plots of the distribution of A(0.1s), that is the
number of individuals of species A at time 0.1 s, obtained from 10° runs of the
SSA and 10 runs of the 7 leaping method with ¢ = 0.03.

The similar behaviors of SSA and 7 leaping, shown in Figure 1, and the
negligible distance between the SSA and the 7 leap histograms of Figure 2,
prove the accuracy of the 7 leaping procedure. The efficiency is proved by the
average number of steps of the simulations, which is equal to 102 using SSA and
to 79 with the 7 leaping method.

306 P. Cazzaniga et al.

45000 T T T T T T T T
. SSA ——
tau leaping e

40000 [
35000 |
30000 [
25000 |

20000 |

Histogram Plot

15000

10000

5000

0 é é o® 1 1 1 1 1 " e ’y
850 860 870 880 890 900 910 920 930 940 950
A species

Fig. 2. Histogram plot of the distributions of species A

3 7-DPPs

Two main problems, in the areas of stochastic modeling and of P systems, moti-
vated our work. The first consists in the fact that SSA, as well as the 7 leaping
method, are only applicable to well stirred chemical reaction systems contained
inside a single fixed volume. The second problem concerns DPPs which, up to
now, could only allow qualitative simulations of a system’s dynamics.

A solution to the first problem can be proposed within the framework of P
systems, since the membrane structure is suitable to represent systems consist-
ing of many regions. Moreover, the communication among regions is a basic and
powerful feature in P systems and can be exploited for modeling complex bio-
logical systems (such as, e.g., processes involving molecules crossing membranes
in cellular systems).

An immediate consequence of the solution to the first problem, that is, the
use of P systems for representing multivolume systems and the extension of 7
leaping method for such systems, is that DPPs turn out to be valid tools for
performing also quantitative simulations.

In this section we present the new 7 leaping selection method in the framework
of DPPs. Then, we describe its implementation and test the exactness of both
the procedure and the communication between membranes. In what follows we
will refer without distinction to volumes or membranes.

Tau Leaping Stochastic Simulation Method in P Systems 307

3.1 Tau Leaping Procedure in DPPs

Dynamical probabilistic P systems (DPPs), introduced by Pescini et al. in [24],
are a stochastic class of P systems where the probability values, associated to
each rule according to a prescribed strategy, vary during the evolution of the
system. Details about the method for evaluating probabilities, the way the sys-
tem works and some notes on the corresponding software simulators, as well as
for examples of some simulated systems, can be found in [22,23,24,6].

Two major advantages in modeling complex systems by means of DPPs con-
sist in the intrinsic stochasticity and the possibility to probe different levels of
parallel rule applications. For instance, it is possible to introduce in DPPs a
bounded parallelism by reducing the maximal consumption of objects, at each
step, inside all membranes (see, e.g., the use of “mute rules” in [2]). The 7 leap-
ing method exploits a “bounded parallelism” as well: the number of reactions
applied at each step are dynamically bounded, according to the system state
and the underlying process.

The main difference between 7 leaping and DPPs, as previously said, is that
the first one works on a single volume whereas the second one may simulate
complex structured systems, where every membrane can have a different set of
rules. Cazzaniga et al. reviewed in [6] several stochastic approaches using SSA
inside DPPs. The main problem arisen from that study is connected to the com-
munication rules: in order to move objects between membranes, synchronization
of all evolving processes has to be forced.

Moreover, DPPs using SSA inside each membrane [6], are parallel at the mem-
branes level but sequential at the rule level: one single rule and its execution time
are selected, within each membrane, considering only the internal state of the
membrane where the rule will be executed. Therefore, different time increments
inside different membranes are obtained. For this reason, different time lines are
described although one rule per step (in each membrane where at least one rule
can be applied) is executed.

he introduction of 7 leaping method inside DPPs works out these problems.
First of all, since the same leap of length 7 is chosen for all the volumes in the
system, the membranes are naturally synchronized. The difference between SSA
and 7 leaping is that, when using SSA inside DPPs, the synchronization has to
be forced at the end of each step, since all volumes generate different 7 values
(in other terms, after the same number of steps the time simulated within the
membranes is different). On the contrary, with 7 leaping method we execute
the same number of parallel steps, implicitly synchronizing the processes at the
end of each step, since the same value of 7 is used for all membranes at each
iteration.

Secondly, with 7 leaping we can consider the communicating rules as the
other internal rules, because the rules execution order, within each step, is not
important, due to the Poissonian random variable. Moreover, the time needed
by the objects to cross the membranes is implicitly taken into account in the
rate constants of the communicating rules.

308 P. Cazzaniga et al.

Finally, with 7 leaping, we can manage to keep track of the simulated time of
the whole system: every membrane of the system evolves according to a common
T value, at each step, and executes the same total number of steps. This is a fun-
damental feature to simulate complex systems and to quantitatively reproduce
their dynamics.

The introduction of 7 leaping method inside DPPs requires a new procedure
to select a common 7 value among all membranes of the system.

We recall here that the original 7 leaping procedure can evolve, during each
step, in three different manners: (i) like the SSA, executing one reaction during
the leap, (ii) executing only noncritical reactions, or (iii) executing noncritical
reactions and one critical reaction.

The 7-DPP selection procedure has to consider how every membrane is evolv-
ing during the actual step; then, the smallest 7 generated within the membranes
is used to update the system.

For instance, if a membrane is evolving executing only non critical reactions,
but the 7 chosen inside it is not the smallest one of the system, then - after
receiving the minimal 7 from some other membrane - this membrane has to
sample the next rules from the set of non critical reactions.

Once the procedure generates a local 7, two different scenarios are possible: no
membranes are evolving like SSA, or at least one membrane is evolving according
to SSA.

If no membranes are evolving like SSA, the smallest 7 (7,1,) generated inside
the volumes during the current step is chosen. Then the number of firings of the
rules is sampled as the Poisson random variable P(a;, Tmin)-

If there is at least one membrane evolving in the SSA manner, which generates
a value 7gg4, the procedure has to check if 7,,;, = Tssa. This requirement is
needed because if 7554 is greater than 7,,4,, it is not possible to apply the rule
selected inside that membrane, because the execution would be longer than the
leap. Otherwise, Timin = Tss4 means that 7,,,, was generated by the membrane
evolving according to the SSA, thus the execution of the selected rule is allowed.

3.2 The New Algorithm

In this section we introduce the procedure to select the 7 leap value among
L membranes, and we show how to execute local and communication rules.
The considered structure is composed by [systems A;, | = 1,..., L, each of
them defined as in Section 2.1. Moreover, different X; can have different sets of
rules and object species. The selection of local 7 inside the membranes is done
following the procedure presented in Section 2.2, the smallest 7 of the system is
then used to select the number of firings of the rules.

We remark that, in this new version of the algorithm, a flag is used during
the iterations to remember how the rule selection has to proceed: flag = 1
means that the membrane is evolving according to the SSA, flag = 2 means
that the membrane has to execute only non critical reactions, and flag = 3
means that the membrane will execute non critical reactions and one critical
reaction.

Tau Leaping Stochastic Simulation Method in P Systems 309

For each iterative step, the new version of the algorithm works, inside every
volume [, as follows:

1. Locate the set of all critical reactions.

2. Compute the quantities p; and o;2.

3. Select the value of 7’ as indicated in equation (10).

4. If 7/ < n/ap then extract an SSA 7 as described in [12], set flag = 1 and
go to step 8, otherwise go to the next step. The factor n is usually set to a
reasonable value (n = 10 in the following simulations).

5. Compute the sum of the propensity functions of all critical reactions a§(x).

6. Generate 7" = 1/a§(x) - 1/rnd, where rnd is a value randomly chosen from
the uniform unit interval (0,1).

7. If 7/ < 7" then set 7 = 7" and flag = 2, else set 7 = 7" and flag = 3.

8. Receive the smallest 7 of the system: 7,1,

9. If flag =1 and 7 = Ty, extract one reaction to execute.

10. If flag =1 and 7 > Tyin, St T = T — Tinin.-
11. If flag = 2:

— For all critical reactions R;, set the number of firings k; = 0.
— For all noncritical reactions R;, generate k; as a sample of the Poisson
random variable P(a;(X), Tmin) with mean a;(X)Tmin.
12. If flag = 3:
— Select one critical reaction R; to be fired during this step and set k; = 1,
for all other critical reactions R; set k; = 0.
— For all noncritical reactions R;, generate k; as a sample of the Poisson
random variable P(a;(xX), Tmin) with mean a;(X)Tmin.
13. Send and receive objects to and from other membranes (if communication
rules were selected).
14. If flag = 1 and 7 > 7,4, and no objects are received, go to step 8, otherwise
go to the next step.
15. Update the state of the system: X (¢4 Timin) = X(¥) +Zj€J k;-v;, and check
the termination condition ¢ < t,,4z-

The procedure begins like the pure 7 leaping method, that is, the same 7
selection is executed (from step 1 to step 7).

After receiving the smallest 7, during step 8, the procedure has to check how
the membrane will evolve.

Hence, during step 9, if flag = 1 and the internal 7 is the smallest of
the system, a single rule is applied during the actual iteration (evolving like
SSA).

Otherwise (step 10), if flag = 1 and the internal 7 is greater than the small-
est 7 of the system, then the value of the local 7 is decreased by T, and
no rule is executed. This is necessary because during 7, is not possible to
completely execute the rule selected with the SSA, since it would need 7 to be
executed.

If flag =2 or flag = 3, the algorithm selects the rules to fire as a sample of
the Poisson random variable P(a;(X), Tmin) with mean a;(X)7min.

310 P. Cazzaniga et al.

All the communication rules are applied during step 13, sending and receiving
objects to and from other membranes.

Step 14 is an operation executed, inside a membrane evolving in a SSA manner
without applying any reaction, to check if any object has been received. In the
positive case a new value of 7 will be computed during the next iteration because,
although no reactions will be executed, the state of the membrane changes due
to the received objects. Otherwise, when no object has been received, in the next
iteration the execution of the algorithm inside this membrane jumps directly to
step 8 of the algorithm.

Finally, step 15 updates the state of the system and check if the actual sys-
tem time ¢ exceeds the prescribed simulation time #,,,,. If the condition holds,
terminate the execution, otherwise go to step 1.

3.3 A Test Case

To test the new algorithm presented in the previous section, we have imple-
mented the consecutive reactions systems (11) with 7-DPPs. It is possible to
test the communication (here considered as instantaneous) between membranes,
and check the new 7 selection procedure modeling the system by means of two
volumes and putting one rule in each volume. We label the membranes with 1
and 2, and then we put rule A — (B,ins) inside volume 1 and B — (C,iny)
inside volume 2.

Figure 3 shows that the 7 leaping and the 7-DPPs simulations have similar
behavior. This benchmark shows that our algorithm is correct and reliable.

1000 T T T T T T
tau DPPs
tau leaping -
800
600
“©
<
>
S
=
°
£
400
200
0 1 1) — 1 1 1

0 10 20 30 40 50 60 70 80
Time [s]

Fig. 3. Comparison between Gillespie’s 7 leaping and DPPs 7 leaping

Tau Leaping Stochastic Simulation Method in P Systems 311

4 Conclusions

In this paper we have shown how the stochastic method based on the 7 leap-
ing procedure can be implemented within the framework of P systems, for the
simulation of complex biological systems. In particular, we have considered the
class of dynamical probabilistic P systems, to exploit the possibility of modeling
systems composed by several volumes and of probing different levels of parallel
rule application.

The new 7 selection procedure here introduced works by selecting the smallest
7 taken from the set of taus generated inside the membranes during the current
iteration; then, an evolution step is performed executing several rules, which are
selected following the procedure presented in Section 3.

The advantage of introducing 7 leaping method inside DPPs is that we can
choose the same leap of length 7 for all the volumes, we can communicate objects
in the right way (assuming that they are sent to the other volumes just at the
end of each step, because the execution order does not matter), thus obtaining
a good approximation of the system’s behavior. An important aspect is that we
can trace the simulated time of the whole system, since every membrane evolves
according to the chosen common 7 value. Moreover, the time needed to run the
simulation with the new procedure is shorter than the time needed by the SSA.
In Section 3.3 the communication and the new 7 leap procedures are tested,
comparing the behavior of a simple system implemented both with the single
volume model and with the multi-volume model.

Effective and promising results [16,15] have been obtained with the appli-
cation of 7-DPPs for the stochastic simulations of Ras/cAMP /PKA signalling
pathway (in response to glucose addition and intracellular acidification) in Sac-
charomyces cerevisiae [19]. Current applications of 7-DPPs are also addressing
the investigation of Repressilator systems [10].

The approach proposed in this paper opens several interesting research lines,
ranging from the modeling of real cellular processes or complex biological sys-
tems in general, to the algorithmic improvements of the procedure, and the
development of other relevant (modelling and simulating) features in the area of
Membrane Computing.

References

1. A. Arkin, J. Ross, and H.H. McAdams. Stochastic kinetic analysis of developmental
pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics,
149:1633-1648, 1998.

2. D. Besozzi, P. Cazzaniga, D. Pescini, and G. Mauri. Modelling metapopulations
with stochastic membrane systems. Submitted.

3. W.J. Blake, M. Kern, C.R. Cantor, and J.J. Collins. Noise in eukaryotic gene
expression. Nature, 422:633-637, 2003.

4. Y. Cao, D.T. Gillespie, and L.R. Petzold. Avoiding negative populations in explicit
Poisson tau-leaping. Journ. Chem. Phys., 123:054104, 2005.

312

5.

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

P. Cazzaniga et al.

Y. Cao, D.T. Gillespie, and L.R. Petzold. Efficient step size selection for the tau-
leaping simulation method. Journ. Chem. Phys., 124:044109, 2006.

P. Cazzaniga, D. Pescini, F.J. Romero-Campero, D. Besozzi, and G. Mauri.
Stochastic approaches in P systems for simulating biological systems. In M.A.
Gutiérrez-Naranjo, G. Paun, A. Riscos-Nunez, and F.J. Romero-Campero, Eds.,
Proceedings of the Fourth Brainstorming Week on Membrane Computing, RGNC
REPORT 02/2006, 145-164. Fénix Editora, 2006.

A. Chatterjee, D.G. Vlachos, and M.A. Katsoulakis. Binomial distribution based
tau-leap accelerated stochastic simulation. Journ. Chem. Phys., 122:024112, 2005.
G. Ciobanu, G. Paun, and M.J. Pérez-Jiménez, Eds., Applications of Membrane
Computing. Springer—Verlag, Berlin, 2005.

N. Fedoroff and W. Fontana. Small numbers of big molecules. Science, 297:1129—
1131, 2002.

J. Garcia-Ojalvo, M. B. Elowitz, and S. H. Strogatz. Modeling a synthetic multi-
cellular clock: Repressilators coupled by quorum sensing. PNAS, 101:10955-10960,
2004.

M. Gibbons and J. Bruck. Chemical systems with many species and many channels,
Journ. Phys. Chem., 104:1876-1889, 2000.

D.T. Gillespie. Exact stochastic simulation of coupled chemical reactions. Journ.
Phys. Chem., 81:2340-2361, 1977.

D.T. Gillespie and L.R. Petzold. Approximate accelerated stochastic simulation of
chemically reacting systems. Journ. Chem. Phys., 115:1716-1733, 2001.

D.T. Gillespie and L.R. Petzold. Improved leap-size selection for accelerated
stochastic simulation. Journ. Chem. Phys., 119:8229-8234, 2003.

E. Martegani, R. Tisi, F. Belotti, S. Colombo, C. Paiardi, J. Winderickx, P. Caz-
zaniga, D. Besozzi, and G. Mauri. Identification of an intracellular signalling com-
plex for RAS/cAMP pathway in yeast: experimntal evidences and modelling. In-
ternational Specialised Symposium on Yeasts, Hanasaari - Espoo, Finland, June
18-21, 2006.

E. Martegani, P. Cazzaniga, D. Besozzi, S. Colombo and G. Mauri. Stochastic
modeling of the Ras/cAMP signal transduction pathway in yeast. Computational
Methods in Systems Biology, Trento, Italy, October 18-19, 2006.

T.C. Meng, S. Somani, and P. Dhar. Modeling and simulation of biological systems
with stochasticity. In Silico Biology, 4:0024, 2004.

C.J. Morton-Firth. Stochastic simulation of cell signaling pathways. PhD thesis,
University of Cambridge, Cambridge, UK, 1998.

D. Miiller, S. Exler, L. Aguilera-Véazquez, E. Guerrero-Martin, and M. Reuss.
Cyclic AMP mediates the cell cycle dynamics of energy metabolism in Saccha-
romyces cerevisiae. Yeast, 20:351-367, 2003.

G. Paun. Computing with membranes. J. Comput. Syst. Sci., 61:108-143, 2000.
G. Paun. Membrane Computing. An Introduction. Springer—Verlag, 2002. Berlin.
D. Pescini, D. Besozzi, and G. Mauri. Investigating local evolutions in dynami-
cal probabilistic P systems. Proceedings of Seventh International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing (SYNASC’05). IEEE
Computer Press, 440-447, 2005.

D. Pescini, D. Besozzi, G. Mauri, and C. Zandron. Analysis and simulation of
dynamics in probabilistic P systems. In A. Carbone, N. Pierce, Eds., DNA Com-
puting, 11th International Workshop on DNA Computing, DNA11, London, ON,
Canada, June 6-9, 2005. LNCS 3892, 236-247, Springer—Verlag, 2006.

24.

25.

26.

Tau Leaping Stochastic Simulation Method in P Systems 313

D. Pescini, D. Besozzi, G. Mauri, and C. Zandron. Dynamical probabilistic P
systems. International Journal of Foundations of Computer Science, 17:183-204,
2006.

T. Tian and K. Burrage. Binomial leap methods for simulating stochastic chemical
kinetics. Journ. Chem. Phys., 121:10356-10364, 2004.

T.E. Turner, S. Schnell, and K. Burrage. Stochastic approaches for modelling in
vivo reactions. Computational Biology and Chemistry, 28:165-178, 2004.

P Machines: An Automata Approach to
Membrane Computing*

Gabriel Ciobanu'? and Mihai Gontineac'3

! Romanian Academy, Institute of Computer Science
Blvd. Carol I nr.8, 700505 Iasi, Romania
2 «A I.Cuza” University, Faculty of Computer Science
3 «A 1.Cuza” University, Faculty of Mathematics
Blvd. Carol I nr.11, 700506 Iasi, Romania
gabriel@info.uaic.ro, gonti@uaic.ro

Abstract. In this paper we present P machines corresponding to mem-
brane systems with a single membrane. We give examples of simple P
machines for both P systems with promoters and P systems with priori-
ties. For each case we get the s